首页> 外文学位 >Architecture and design of a simultaneously bidirectional single-ended high-speed chip-to-chip interface.
【24h】

Architecture and design of a simultaneously bidirectional single-ended high-speed chip-to-chip interface.

机译:同时双向单端高速芯片间接口的体系结构和设计。

获取原文
获取原文并翻译 | 示例

摘要

Advances in integrated circuit technologies permit faster clocking speed and increased logic density in chips. However, advances in chip packaging technologies have not kept pace; hence the number of input/output pins and input/output bandwidth per chip has increased less rapidly. The resulting disparity creates the need for more bandwidth per pin. Single-ended signalling and simultaneous bidirectional signalling methods may each increase the bandwidth per pin by a factor of two. However, using these signalling methods poses challenges in compensating for additional noise sources and reduced noise rejection ratios.; This dissertation presents the architecture, circuit techniques, and test results for a single-ended simultaneously bidirectional interface capable of a total throughput of 8 Gigabits per second per pin. The interface addresses the noise reduction challenges by utilizing a pseudo differential reference with noise immunity approaching that of a fully differential reference. Furthermore, noise generation is reduced by on-chip termination, and low-skew near-end outgoing signal echo cancellation.; The pseudo-differential reference accurately tracks low frequency common-mode and differential-mode noise on the supplies of both chips by a novel method of comparing the data signal with a set of three partial reference signals that constitute a pseudo-differential reference. Only one of the partial references is shared between the chips. Prior methods have shared two references, which offers less accurate noise tracking. This new method achieves higher accuracy using one versus two pins.; The system cancels high frequency noise on the chip supplies by a novel noise transfer matching technique. This technique compensates for inherent physical differences between the pseudo-differential reference and the plurality of data signals that share the reference. The method also permits either current-mode or voltage-mode signalling, and for near-end outgoing signal cancellation of a predistorted signal, allowing transmitter-based compensation of inter-symbol interference.; The receiver includes a new multi-input capacitive-averaging sense amplifier that tracks and amplifies the linear analog function of four signals needed to implement the pseudo-differential reference method. The transmitter includes a novel source-terminated, voltage-mode output driver that drives a predistorted output signal while maintaining a constant output impedance. Both the receiver and transmitter are multiplexed to allow for operation at high speeds.; A test chip in a 0.35 micron digital CMOS technology uses these techniques for an eight bit wide single-ended voltage-mode simultaneous bidirectional interface and achieves a performance of 8 Gigabits per second per pin.
机译:集成电路技术的进步允许更快的时钟速度和更高的芯片逻辑密度。但是,芯片封装技术的进步并没有跟上。因此,每个芯片的输入/输出引脚数和输入/输出带宽的增长速度较慢。由此产生的差异导致每个引脚需要更多的带宽。单端信令和同时双向信令方法可能会将每个引脚的带宽增加两倍。然而,使用这些信令方法在补偿额外的噪声源和降低的噪声抑制比方面提出了挑战。本文提出了一种单端同时双向接口的体系结构,电路技术和测试结果,该接口的总吞吐量为每引脚每秒8吉比特。该接口通过利用伪差分基准解决了降噪挑战,该伪差分基准的抗扰度接近全差分基准。此外,通过片上端接和低偏斜近端出局信号回声消除,减少了噪声的产生。伪差分参考通过一种新颖的方法将数据信号与构成伪差分参考的一组三个部分参考信号进行比较,从而精确跟踪两个芯片电源上的低频共模和差分模式噪声。芯片之间仅共享部分参考之一。现有方法共享了两个参考,这提供了不太精确的噪声跟踪。这种新方法使用一个引脚和两个引脚即可达到更高的精度。该系统通过一种新颖的噪声传递匹配技术消除了芯片电源上的高频噪声。该技术补偿了伪差分参考与共享该参考的多个数据信号之间的固有物理差异。该方法还允许电流模式或电压模式信令,并允许预失真信号的近端输出信号消除,从而允许基于发射机的符号间干扰补偿。该接收器包括一个新的多输入电容平均感测放大器,该放大器跟踪并放大实现伪差分参考方法所需的四个信号的线性模拟功能。该发送器包括一个新颖的源端接电压模式输出驱动器,该驱动器在保持恒定输出阻抗的同时驱动预失真的输出信号。接收器和发送器都被多路复用以允许高速操作。采用0.35微米数字CMOS技术的测试芯片将这些技术用于8位宽的单端电压模式同时双向接口,并且每个引脚每秒可实现8 Gb的性能。

著录项

  • 作者

    Drost, Robert James.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号