首页> 外文学位 >Molecular mechanisms controlling cell division and differentiation during maize development.
【24h】

Molecular mechanisms controlling cell division and differentiation during maize development.

机译:玉米发育过程中控制细胞分裂和分化的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Elaborate genetic mechanisms are involved in controlling cell division and differentiation during plant development. The maize Ex&barbelow;tra c&barbelow;ell l&barbelow;ayers1 (Xcl1) mutation provides insight into these developmental pathways since it causes aberrant oblique, periclinal divisions to occur in the protoderm layer. These periclinal divisions occur at the expense of normal anticlinal divisions in the protoderm and cause the production of extra cell layers with epidermal characteristics, indicating that cells are differentiating according to lineage instead of position. Mutant kernels have several aleurone layers instead of one, indicating that Xcl1 alters cell division orientation in cells that divide predominantly in the anticlinal plane. Dosage analysis of Xcl1 reveals that the mutant phenotype is caused by overproduction of a normal gene product. This allows cells that have already received differentiation signals to continue to divide in aberrant planes and suggests that the timing of cell division determines differentiation. Cells that divide early and in the absence of differentiation signals use positional information, while cells that divide late after perceiving differentiation signals use lineage information instead of position.; Double mutant analyses indicate that XCL1 may interact with several other genetic pathways during normal shoot development. Among these are TANGLED1, a microtubule-binding protein, and CRINKLY4, a receptor kinase involved in epidermal differentiation. XCL1 also displays genetic interactions with KNOTTED1-like homeobox (KNOX) proteins involved in maintaining pools of undifferentiated cells in the shoot apical meristem. The double mutant interactions of Xcl1 with dominant KNOX mutants such as Knotted1, Gnarly1 , and Rough sheath1 indicate that XCL1 may play a role in linking KNOX proteins with auxin-mediated developmental pathways. Thus, XCL1 is an important regulator of both cell division orientation and differentiation signal transduction pathways during plant development.
机译:精细的遗传机制参与植物发育过程中的细胞分裂和分化控制。玉米 Ex&barbelow; ell c&barbelow; ell l&barbelow; ayers1 Xcl1 )突变提供了对这些发育途径的洞察力,因为它会导致在原皮层中发生异常的倾斜,周缘分裂。这些周缘分裂的发生是以原皮中正常的背缘分裂为代价的,并导致产生具有表皮特征的额外细胞层,表明细胞是根据谱系而不是位置分化的。突变的籽粒有几个糊粉层,而不是一层,表明 Xcl1 会改变主要在背斜面上分裂的细胞的细胞分裂方向。 Xcl1 的剂量分析表明,突变表型是由正常基因产物的过量生产引起的。这使得已经接收到分化信号的细胞继续在异常平面中分裂,并暗示了细胞分裂的时机决定了分化。在没有分化信号的情况下早期分裂的细胞使用位置信息,而在感知分化信号之后的晚期分裂的细胞使用谱系信息而不是位置。双重突变分析表明,XCL1在正常芽发育过程中可能与其他几种遗传途径相互作用。其中包括TANGLED1(一种微管结合蛋白)和CRINKLY4(一种参与表皮分化的受体激酶)。 XCL1还显示了与KNOTTED1样同源盒(KNOX)蛋白的遗传相互作用,该蛋白参与维持茎尖分生组织中未分化细胞的池。 Xcl1 与主要的KNOX突变体(如 Knotted1,Gnarly1 Rough鞘1 )的双重突变相互作用表明XCL1可能在连接KNOX方面起作用具有生长素介导的发育途径的蛋白质。因此,XCL1是植物发育过程中细胞分裂方向和分化信号转导途径的重要调节剂。

著录项

  • 作者

    Kessler, Sharon Ann.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Biology Botany.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 p.5618
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号