首页> 外文学位 >Dimensionless hydrodynamic simulation of high pressure multiphase reactors subject to foaming.
【24h】

Dimensionless hydrodynamic simulation of high pressure multiphase reactors subject to foaming.

机译:发生泡沫的高压多相反应器的无量纲流体动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Safoniuk (1999) proposed that three-phase fluidized bed hydrodynamics can be scaled based on geometric similarity and matching of five dimensionless groups: the M-group, M = g(ρL − ρg)μL 4/(ρL2σ3); a modified Eötvös number, Eo* = g(ρL − ρg)d p2/σ; the liquid Reynolds number, ReL = ρLdpULL; a density ratio, ρpL; and a superficial velocity ratio, Ug/UL. Since many commercial reactors operate at high pressure with multicomponent liquids that may be subject to foaming, an experimental program was designed to test whether multiphase systems that match Safoniuk's criteria but differ in interfacial properties and gas density produce the same fluid dynamic parameters.; The liquid density, viscosity and surface tension were found to be insufficient to characterize bubble coalescence in multicomponent solutions. Multicomponent and contaminated liquids present interfacial effects that reduce the bubble coalescence rate and hinder the bubble rise velocity resulting in greater gas holdups than in pure monocomponent liquids under similar conditions. The extent of interfacial effects depends on the bubble size and is most important for Eo 40. Additional liquid physical properties such as dynamic surface tension and dilatational surface elasticity were also found insufficient since surface-active components were well-dispersed and in equilibrium with the gas-liquid interface. Gas density was found to be an important parameter in both gas-liquid and gas-liquid-solid systems. The dispersed bubble flow regime is sustained to higher gas velocities and gas holdups for denser gases.; As a secondary objective, a study on the role of particles in establishing radial uniformity of fluids that are initially maldistributed was undertaken in a 127 mm inner diameter column with 3.3-mm polymer particles and 3.7-mm glass beads (densities 1280 and 2510 kg/m3, respectively), with water and air as the liquid and gas. The effects of initial gas-liquid spatial maldistribution on overall phase holdups were not very significant for the glass beads since radial non-uniformities seemed to be eliminated relatively quickly.; Finally, the measurement of cross-sectional phase holdups using the attenuation and velocity change of ultrasound was attempted in a 292 mm inner diameter column with air, water and uniform glass beads of 1.3 mm diameter. The approach worked relatively well for gas-liquid and liquid-solid systems. However, signal attenuation greatly limits its use in three-phase fluidized beds, as it is difficult to operate at a frequency that ensures transmission through both dispersed phases. (Abstract shortened by UMI.)
机译:Safoniuk(1999)提出,可以基于几何相似度和五个无量纲组的匹配来缩放三相流化床流体力学:M-组,M = g(ρ L -ρg)μ L 4 /(ρ L 2 σ 3 );修正的Eötvös数Eo * = g(ρ L g )d p 2 /σ;液体雷诺数Re L L d p U L L ;密度比ρ p L ;和表面速度比U g / U L 。由于许多商用反应器是在高压下使用可能会发泡的多组分液体运行的,因此设计了一个实验程序来测试符合Safoniuk标准但界面性质和气体密度不同的多相系统是否产生相同的流体动力学参数。发现液体密度,粘度和表面张力不足以表征多组分溶液中的气泡聚结。在相似条件下,多组分和受污染的液体会产生界面效应,从而降低气泡的聚结速率并阻碍气泡的上升速度,从而导致气体滞留率高于纯单组分液体。界面作用的程度取决于气泡的大小,并且对于Eo <40最为重要。由于表面活性成分分散得很好并且与表面活性物质平衡,因此还发现其他液体物理特性(例如动态表面张力和膨胀表面弹性)不足。气液界面。发现气体密度是气-液和气-液-固系统中的重要参数。分散的气泡流动状态可维持较高的气体速度和较浓的气体的气体滞留率。作为第二个目标,研究了颗粒在建立最初分布不均的流体的径向均匀性中的作用,该研究是在一个内径为127 mm的色谱柱中进行的,该色谱柱具有3.3 mm的聚合物颗粒和3.7 mm的玻璃珠(密度1280和2510 kg / m 3 ),其中水和空气分别为液体和气体。对于玻璃珠而言,初始气液空间分布不均对总相持率的影响不是很明显,因为径向不均匀性似乎可以较快地消除。最终,尝试在292 mm内径的色谱柱中使用超声波的衰减和速度变化来测量横截面相位保持率,该色谱柱具有空气,水和直径为1.3 mm的均匀玻璃珠。该方法在气-液和液-固系统中效果较好。但是,信号衰减极大地限制了其在三相流化床中的使用,因为很难以确保通过两个分散相传输的频率进行操作。 (摘要由UMI缩短。)

著录项

  • 作者

    Macchi, Arturo.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号