首页> 外文学位 >Optimization of internal-tin niobium-tin composites.
【24h】

Optimization of internal-tin niobium-tin composites.

机译:内部锡铌锡复合材料的优化。

获取原文
获取原文并翻译 | 示例

摘要

The heat treatment of internal-Sn wires has two functions: (1) to mix the interfilamentary Cu with Sn from the core, and (2) to react the Sri with Nb to form the superconducting Nb-Sn A15 phase. To study the effectiveness of CU-Sn mixing, the Cu-Sn microstructures were examined in two very different internal-Sn composites after heat treatments of 24 and 150 hours at each of 10 different temperatures (up to 600°C). None of the heat treatments generated a single-phase Cu-Sn microstructure. It was concluded that complete mixing of the Cu and Sn is highly unlikely in commercial wires. However, it was found that Cu-Sn microstructure inhomogeneity has no effect on the critical temperature (Tc), irreversibility field (H*) or inductively measured critical current density (Jc) of fully reacted Nb3Sn wire. Thus control of the superconducting properties lies with the composite design and the A15 reaction heat treatment. However, a Cu-Nb-Sn ternary intermetallic was discovered, which forms as a result of dissolution of Nb and therefore has deleterious effects on Jc. As the Cu fraction within the filament bundle decreases, lengthy Cu-Sn mixing heat treatments must be employed to limit formation of this ternary phase. A direct correlation was found between T c and H*Kramer that is strongly dependent on the Sn concentration in the A15 layer, emphasizing the need to provide proper Sn stoichiometry in the Cu-Nb-Sn package and to effectively contain the Sn within the bundle. Commonly used Nb diffusion barriers can react completely through locally, resulting in Sn loss from the A15 layer and degradation of the superconducting properties. To generate non-Cu Jc(12 T, 4.2 K) = 3000 A/mm2, the required Jc within the A15 layer is 4610 A/mm2, equal to the best literature values. In the best performing internal-Sn conductor to date, it is shown that non-Cu Jc(12 T, 4.2 K) of 3000 A/mm2 should be produced by replacing 5 vol.% of the Sn core with Nb or by replacing 3 vol.% of interfilamentary Cu with Nb and Sn.
机译:内部Sn线的热处理具有两个功能:(1)将纤丝间的Cu与来自芯的Sn混合,(2)使Sri与Nb反应形成超导Nb-Sn A15相。为了研究CU-Sn混合的有效性,在10种不同温度(最高600°C)中分别进行了24和150小时的热处理后,在两种非常不同的内部Sn复合物中检查了Cu-Sn的微观结构。热处理均未产生单相Cu-Sn显微组织。可以得出结论,在商业电线中,完全不可能将Cu和Sn完全混合。然而,发现Cu-Sn组织的不均匀性对临界温度( T c ),不可逆场( H *)没有影响。或完全反应的Nb 3 Sn线的感应测量的临界电流密度( J c )。因此,控制超导性能取决于复合材料设计和A15反应热处理。然而,发现了Cu-Nb-Sn三元金属间化合物,其形成是Nb溶解的结果,因此对 J c 具有有害作用。随着长丝束中铜含量的减少,必须采用冗长的Cu-Sn混合热处理来限制该三元相的形成。发现 T c H * Kramer 之间存在直接相关性,这与锡中的Sn浓度密切相关。 A15层,强调需要在Cu-Nb-Sn封装中提供适当的Sn化学计量并有效地将Sn包含在束中。常用的Nb扩散势垒会在局部完全反应,从而导致A15层中的Sn损失并降低超导性能。要生成非Cu J c (12 T,4.2 K)= 3000 A / mm 2 ,所需的 J c 为4610 A / mm 2 ,等于最佳文献值。在迄今为止性能最好的内部Sn导体中,已显示3000 A / mm 2的非Cu J c (12 T,4.2 K) 应通过用Nb代替5%(体积)的Sn芯或用Nb和Sn代替3%(体积)的丝间Cu来生产。

著录项

  • 作者

    Naus, Michael Thomas.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号