首页> 外文学位 >Novel radio frequency resonators for in vivo magnetic resonance imaging and spectroscopy at very high magnetic fields.
【24h】

Novel radio frequency resonators for in vivo magnetic resonance imaging and spectroscopy at very high magnetic fields.

机译:用于在非常高的磁场下进行体内磁共振成像和光谱分析的新型射频谐振器。

获取原文
获取原文并翻译 | 示例

摘要

Since the discovery of nuclear magnetic resonance (NMR) in 1946, the magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) technique has evolved to one of the most powerful tools for diagnosing and studying human diseases non-invasively. Due to the superior intrinsic signal-to-noise ratio (SNR) of high magnetic fields, the field strength of human MRI system has been pushed from less than 1 Tesla to 4 Tesla, even to today's newly developed 7 Tesla (University of Minnesota at Twin Cities) and 8 Tesla (Ohio State University at Columbus). To realize this high field advantage in human MR studies, design of efficient high-frequency RF coil, a key device in the MR system, is demanded. The performance of RF coils, especially large volume coils for human head or body MR imaging is essential to the success of the high field human MR imaging and spectroscopy. A number of problems related to RF coil designs such as decreased RF penetration, pronounced dielectric resonance effect, ohmic losses, electromagnetic radiation losses and B, field inhomogeneity arises at high fields. The traditional RF coils operating at low frequencies for low field MR applications apparently appear limitations at high fields. All these problems call for new RF coil designs for high field MR studies.; This dissertation investigates these high-field RF coil problems and solutions. A new RF coil design concept using microstrip transmission line (MTL) is developed for the use of in vivo MR applications at high fields. Various RF coil designs using this concept for human and animal MRI/MRS at high magnetic field strengths of 4T, 7T, 9.4T and 28T are successfully developed and validated. The outcomes from this thesis work provide an efficient solution for designing high-frequency RF coils for high-field MR applications. In addition, an implanted micro coil with a region-defined (REDE) B1 field for determining input function of rat carotid artery with high temporal resolution is also introduced. This REDE implanted micro coil provides a new and efficient means in the cerebral metabolic rate of oxygen utilization (CMRO2) studies.
机译:自从1946年发现核磁共振(NMR)以来,磁共振成像(MRI)和磁共振波谱(MRS)技术已发展成为用于非侵入式诊断和研究人类疾病的最强大工具之一。由于高磁场具有出色的固有固有信噪比(SNR),因此人类MRI系统的场强已从不足1特斯拉提高到4特斯拉,甚至发展到今天新开发的7特斯拉(明尼苏达大学双城)和8特斯拉(俄亥俄州立大学,哥伦布分校)。为了在人类MR研究中实现这种高场优势,需要设计高效的高频RF线圈,这是MR系统中的关键设备。 RF线圈的性能,特别是用于人体头部或身体MR成像的大体积线圈,对高场人体MR成像和光谱学的成功至关重要。与射频线圈设计相关的许多问题,例如射频穿透力降低,明显的介电共振效应,欧姆损耗,电磁辐射损耗以及高场磁场,都会引起磁场不均匀。对于低场MR应用,在低频下运行的传统RF线圈显然在高场上似乎存在局限性。所有这些问题要求用于高场MR研究的新型RF线圈设计。本文研究了这些高场射频线圈的问题和解决方案。开发了一种使用微带传输线(MTL)的新的RF线圈设计概念,以用于高磁场的体内MR应用。成功开发并验证了使用此概念进行人和动物MRI / MRS的各种RF线圈设计,并获得了4T,7T,9.4T和28T的高磁场强度。这项工作的成果为设计用于高场MR应用的高频RF线圈提供了有效的解决方案。此外,还引入了具有区域定义(REDE)B1场的植入式微型线圈,用于确定具有高时间分辨率的大鼠颈动脉的输入功能。这种植入REDE的微型线圈为研究脑部氧代谢率(CMRO 2 )提供了一种新的有效手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号