首页> 外文学位 >Nanostructured poly(ethylene glycol) thin films for silicon-based bio-microsystems.
【24h】

Nanostructured poly(ethylene glycol) thin films for silicon-based bio-microsystems.

机译:用于硅基生物微系统的纳米结构聚乙二醇薄膜。

获取原文
获取原文并翻译 | 示例

摘要

With the rapid evolution of the field of BioMEMS (biomedical micro electro mechanical system) technology in the recent years, silicon-based materials (e.g. silicon, glass, silicon dioxide, quartz) are gaining prominence for the development of microsystems for analytical and separation technologies. The interaction of a device with a biological environment leads to various challenges that have to be taken into account in order to allow its proper operation. It is known that silicon surfaces exposed to air or water develop a native oxide layer with surface silanol groups. These silanol groups are ionizable in water and make silicon surface negatively charged at neutral pH. A charged surface may create a streaming potential in the fluid flow and promote biofouling i.e. the strong tendency of proteins to physically adsorb to the surfaces. The adsorbed protein layer can mediate various biological responses such as cell attachment and activation, finally resulting in the formation of a fibrous capsule around the implanted device. All these events may interfere with the optimal operation of the device first by increasing its power consumption, and ultimating causing its failure and rejection by the host. Hence, it is desirable to control protein adsorption by surface modification with a biocompatible material/polymer. Poly(ethylene glycol) (PEG)/poly(ethylene oxide) (PEO), a water soluble, non-toxic, and non-immunogenic polymer, serves as an excellent coating material and has been shown to reduce protein adsorption and cell adhesion on synthetic surfaces. In this study, we develop and examine homogeneous and conformal PEG thin films created using a covalent coupling technique suitable for nano-meter feature size silicon-based microsystems, more particularly nanoporous silicon membranes. These films have been extensively characterized in terms of their ability to control protein adsorption and cell adhesion, and stability in vivo-like environment. Further in vivo implantation studies demonstrate improved performance of the PEG-coupled silicon membranes over unmodified silicon membranes.
机译:近年来,随着生物MEMS(生物医学微机电系统)技术领域的快速发展,硅基材料(例如硅,玻璃,二氧化硅,石英)在分析和分离技术微系统的开发中日益突出。设备与生物环境的相互作用导致各种挑战,必须考虑这些挑战才能使其正常运行。已知暴露于空气或水的硅表面形成具有表面硅烷醇基团的天然氧化物层。这些硅烷醇基团在水中可离子化,并使硅表面在中性pH下带负电。带电的表面可在流体流中产生流电势并促进生物结垢,即蛋白质物理吸附到表面的强烈趋势。吸附的蛋白质层可以介导各种生物反应,例如细胞附着和激活,最终导致在植入装置周围形成纤维囊。所有这些事件都可能首先通过增加设备功耗并最终导致设备故障和被主机拒绝而干扰设备的最佳运行。因此,希望通过用生物相容性材料/聚合物进行表面改性来控制蛋白质的吸附。聚乙二醇(PEG)/聚环氧乙烷(PEO)是一种水溶性,无毒且无免疫原性的聚合物,是一种出色的涂料,已被证明可以减少蛋白质的吸附和细胞粘附。合成表面。在这项研究中,我们开发和检查使用适用于纳米特征尺寸硅基微系统(特别是纳米多孔硅膜)的共价偶联技术制备的均质和共形PEG薄膜。这些膜在控制蛋白质吸附和细胞黏附的能力以及在类似体内的环境中的稳定性方面已得到广泛表征。进一步的体内植入研究表明,与未改性的硅膜相比,PEG偶联的硅膜具有更高的性能。

著录项

  • 作者

    Sharma, Sadhana.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Biomedical.; Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号