首页> 外文学位 >Resource allocation for complex systems in the presence of uncertainty.
【24h】

Resource allocation for complex systems in the presence of uncertainty.

机译:存在不确定性时为复杂系统分配资源。

获取原文
获取原文并翻译 | 示例

摘要

The objective of the present work is to quantify and manage the confidence in model-based predictions associated with complex systems as exemplified by pollution transport in a watershed system. A probabilistic framework is adopted for representing uncertainty and a constrained optimization problem is posed, the solution of which provides the strategy for resource allocation that will maximize the target confidence. The hydrologic cycle, which involves multi-physics phenomena, is the driving force behind the transport of pollutants in the watershed. Mechanisms for pollutant transport which are addressed in this work include surface runoff and advection in streams and rivers. These different modes of transport when coupled together form an integrated transport model for a given watershed. The thesis addresses the flow of data and information between the components making up this model. Given the nature of this problem which features natural variability and complex boundary conditions, the properties of the parameters of the sub-models are modeled as spatially, and sometimes temporally, varying random processes. The Karhunen-Loeve expansion is used to represent these processes in terms of a denumerable set of random variables. Then, as a result, the predicted state variables are identified with their coordinates with respect to a basis formed by the Polynomial Chaos random variables. Once the coefficients in the Polynomial Chaos representation have been computed, a complete probabilistic characterization of the state variables processes can be obtained. It is worth noting that a treatment to the interaction across the interfaces of the sub-models is essential for the proper analysis of the propagation. An optimization algorithm scheme is then developed that incorporates budget constraint component, while minimizing the uncertainty of the final prediction by selectively reducing the uncertainty of the input parameters. The thesis makes original contributions to the computational modeling of integrated uncertain systems and to the management of uncertainty in the associated predictions.
机译:本工作的目的是量化和管理与复杂系统相关的基于模型的预测的可信度,例如分水岭系统中的污染迁移。采用一个概率框架表示不确定性,提出了一个约束优化问题,该问题的解决方案提供了将目标置信度最大化的资源分配策略。涉及多种物理学现象的水文循环是流域内污染物迁移的驱动力。这项工作中涉及的污染物运输机制包括地表径流和河流和河流中的平流。这些不同的运输方式结合在一起就形成了给定分水岭的综合运输模型。本文讨论组成该模型的组件之间的数据和信息流。考虑到此问题的性质(具有自然可变性和复杂的边界条件),将子模型的参数属性建模为在空间上(有时在时间上)变化的随机过程。 Karhunen-Loeve展开式用于用一组可数的随机变量表示这些过程。然后,结果,相对于由多项式混沌随机变量形成的基准,以其坐标来识别预测状态变量。一旦计算了多项式混沌表示中的系数,就可以获得状态变量过程的完整概率表征。值得注意的是,对于子模型的接口之间的交互作用的处理对于正确分析传播至关重要。然后开发出一种优化算法方案,该方案结合了预算约束成分,同时通过有选择地减少输入参数的不确定性来最小化最终预测的不确定性。本文为集成不确定性系统的计算建模以及相关预测中的不确定性管理做出了独特的贡献。

著录项

  • 作者

    Hayek, Bernard Michel.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Civil.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号