首页> 外文学位 >A multichannel restoration approach to radiance refinement in imaging spectroscopy.
【24h】

A multichannel restoration approach to radiance refinement in imaging spectroscopy.

机译:一种多通道修复方法,可改善成像光谱中的辐射度。

获取原文
获取原文并翻译 | 示例

摘要

The emerging field of imaging spectroscopy is a powerful new technique for use in the surface reconstruction problem. In it, highly-dimensional spectral data are analyzed using vector-based strategies which support object space classification at the single pixel level. In practice, image space radiance data are usually inverted to recover estimates of object space reflectance, and these reflectance spectra are matched against a library of known object space spectra. Consequently, the accuracy of the inversion from radiance to reflectance is important. In this research, we explore a novel approach to this inversion.; We treat imaging spectroscopy as an approximately Linear Shift-Invariant (LSI) System and approach the inversion problem as a Multi-Channel Restoration (MCR) computation. We call this approach Radiance Refinement by Multi-Channel Restoration (RRMCR). RRMCR has the potential to simultaneously correct perturbations to radiance which are induced by the atmosphere and the sensor itself, and specifically address the radiance bias introduced by the well-known adjacency effect.; In this research, we report on the implementation of RRMCR using both a priori and a posteriori system identification strategies. We first deconvolve the calibrated Point Spread Function (PSF) from each channel of a hypercube using inverse filtering in the frequency domain. We then conduct a channel-by-channel estimation of the system PSF using Edge Gradient Analysis (EGA), and re-compute the inverse filter for the hypercube.; In these experiments, we use a novel dual-altitude approach wherein we employ a low-altitude image as a proxy for the object space radiance data. Specifically, we restore the higher altitude radiance data to the radiance measured at a lower altitude. The two airborne images are acquired with short temporal separation such that irradiance and atmospheric conditions are assumed to be constant. This strategy allows us to avoid issues associated with the inter-calibration of ground level and airborne spectrometers.; Our work demonstrates the potential of this approach for removing a radiance bias caused by the known across-track over sample in a specific spectrometer, the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). We also show that the RRMCR approach can be used with an EGA-derived PSF to compensate for total system perturbations, though this computation tends to increase the noise in the radiance data and requires that we exercise great care in the system identification step.
机译:成像光谱学的新兴领域是用于表面重建问题的强大的新技术。其中,使用基于矢量的策略分析高维光谱数据,该策略支持在单个像素级别进行对象空间分类。在实践中,通常将图像空间辐射数据反转以恢复对物空间反射率的估计,并且将这些反射光谱与已知的物空间光谱库进行匹配。因此,从辐射度到反射率的转换精度非常重要。在这项研究中,我们探索了一种新型的反演方法。我们将成像光谱学视为近似线性位移不变(LSI)系统,并将反演问题作为多通道恢复(MCR)计算进行处理。我们称这种方法为“通过多通道还原进行辐射细化”(RRMCR)。 RRMCR有潜力同时校正由大气和传感器本身引起的对辐射的扰动,特别是解决由众所周知的邻接效应引起的辐射偏差。在这项研究中,我们报告了使用先验后验系统识别策略执行RRMCR的情况。我们首先使用频域中的逆滤波对超立方体每个通道的校准点扩展函数(PSF)进行反卷积。然后,我们使用边缘梯度分析(EGA)对系统PSF进行逐通道估计,并重新计算超立方体的逆滤波器。在这些实验中,我们使用一种新颖的双海拔方法,其中我们使用低海拔图像作为对象空间辐射数据的代理。具体来说,我们将较高海拔的辐射数据还原为较低海拔下测量的辐射。以短暂的时间间隔获取两个机载图像,从而假定辐照度和大气条件是恒定的。这种策略使我们避免了与地面和机载光谱仪的相互校准有关的问题。我们的工作证明了这种方法在消除由特定光谱仪(机载可见和红外成像光谱仪(AVIRIS))中已知的跨轨样品引起的辐射偏差方面的潜力。我们还表明,RRMCR方法可以与EGA衍生的PSF一起使用,以补偿整个系统的扰动,尽管这种计算会增加辐射数据中的噪声,并且要求我们在系统识别步骤中格外小心。

著录项

  • 作者

    Tuell, Grady Hogan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Geodesy.; Physics Optics.; Geotechnology.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 大地测量学;光学;地质学;
  • 关键词

  • 入库时间 2022-08-17 11:46:08

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号