首页> 外文学位 >DRIFT characterization of polyacrylates and amino acids on bioceramic surfaces.
【24h】

DRIFT characterization of polyacrylates and amino acids on bioceramic surfaces.

机译:生物陶瓷表面聚丙烯酸酯和氨基酸的DRIFT表征。

获取原文
获取原文并翻译 | 示例

摘要

Interactions between fluorapatite, hydroxyapatite, bioactive glasses and several organic species were studied. Each substrate was exposed to dilute aqueous solutions of amino acids or polyacrylates for 24 hours, at several initial pH values. Solution elemental analysis, pH measurement, and DRIFT spectral characterization were employed to understand the resulting interactions. Solute species suppressed pH increases resulting in increased apatite dissolution. This effect enhanced alkali leaching, gel-layer formation, and suppressed network dissolution in the glasses. Bonding in the apatite-acrylate system at pH > 8.3 was explained by electrostatic interactions between the ionized polyelectrolytes and the positively charged surface. Below pH = 8.3, chemisorbed water was displaced by carbonyl groups, suggesting interaction between carboxyl groups and basic sites. In the higher pH hydroxyapatite-amino acid samples, surface recrystallization of the amino acids was observed, with carbonyl groups fully ionized, while all other apatite samples showed residual carboxyl groups and no amino acid recrystallization. At high pH, evidence suggested water-mediated bonding between calcium-involved surface sites and the amino acids via the carboxylate group. In the glass-acrylate system, at low starting pH, carbonyl groups were ionized, with little evidence of -CO2-M + species. Above pH ∼ 9, -CO2-M + complexes formed, suggesting that the negatively charged gel layer at low pH suppressed glass-acrylate bonding. Adsorption of glycine and L-alanine occurred in a zwitterionic form, with conversion to anionic forms increasing slightly at high final pH. L-alanine crystallized at the surface, while glycine did not. Regardless of substrate or amino acid, no direct evidence of the formation of -CO2-M+ bonds was observed.
机译:研究了氟磷灰石,羟基磷灰石,生物活性玻璃与几种有机物之间的相互作用。将每种底物在几个初始pH值下暴露于氨基酸或聚丙烯酸酯的稀水溶液中24小时。使用溶液元素分析,pH测量和DRIFT光谱表征来了解所产生的相互作用。溶质物质抑制了pH的增加,导致磷灰石溶解度增加。这种作用增强了碱的浸出,凝胶层的形成,并抑制了玻璃在网络中的溶解。 pH> 8.3的磷灰石-丙烯酸酯体系中的键合通过离子化的聚电解质与带正电的表面之间的静电相互作用来解释。 pH值低于8.3时,化学吸附的水被羰基取代,表明羧基和碱性位点之间存在相互作用。在较高pH的羟基磷灰石-氨基酸样品中,观察到氨基酸的表面重结晶,羰基被完全离子化,而所有其他磷灰石样品均显示出残留的羧基且没有氨基酸重结晶。在高pH下,有证据表明水参与的钙表面位点和氨基酸之间通过羧酸酯基进行水介导键合。在玻璃丙烯酸酯体系中,在低起始pH下,羰基被离子化,几乎没有-CO2-M +物质的迹象。在高于pH〜9时,会形成-CO2-M +络合物,这表明在低pH下带负电荷的凝胶层会抑制玻璃与丙烯酸酯的键合。甘氨酸和L-丙氨酸的吸附以两性离子形式发生,在高最终pH下向阴离子形式的转化略有增加。 L-丙氨酸在表面结晶,而甘氨酸则没有。不论底物或氨基酸如何,均未观察到形成-CO2-M +键的直接证据。

著录项

  • 作者

    Hoffman, John William.;

  • 作者单位

    Alfred University.;

  • 授予单位 Alfred University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 342 p.
  • 总页数 342
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号