首页> 外文学位 >Shockwave turbulent boundary layer interaction control using magnetically driven surface discharges.
【24h】

Shockwave turbulent boundary layer interaction control using magnetically driven surface discharges.

机译:使用磁驱动表面放电的冲击波湍流边界层相互作用控制。

获取原文
获取原文并翻译 | 示例

摘要

The dissertation demonstrates the potential for shockwave-turbulent boundary layer interaction control in air using low current DC constricted surface discharges forced by moderate strength magnetic fields. Experiments are conducted in a Mach 2.6 indraft air tunnel with discharge currents up to 300 mA and magnetic field strengths up to 5 Tesla. Separation and non-separation inducing shocks are generated with diamond shape shockwave generators located on the wall opposite to the surface electrodes, and flow properties are measured with schlieren imaging, static wall pressure probes and acetone flow visualization. Also, an efficient, time dependent, two-dimensional Navier-Stokes numerical code for shockwave boundary layer interaction in air is developed. To replicate the experiments done at high Reynolds number, the code is divided into time independent and time dependent regimes to significantly reduce computation time. The effect of plasma control on boundary layer separation depends on the direction of the Lorentz force ( j&d16;xB&d16; ). It is observed that by using a Lorentz force that pushes the discharge upstream, separation can be induced or further strengthened even with discharge currents as low as 30 mA in a 3 Tesla magnetic field. If shock induced separation is present, it is observed that by using a Lorentz force that pushes the discharge downstream, separation can be suppressed, but this required higher currents, greater than 80 mA. Acetone planar laser scattering is used to image the flow structure in the test section and the reduction in the size of recirculation bubble and its elimination are observed experimentally as a function of actuation current and magnetic field strength. Computational results are in good agreement with experiments in terms of the flow structure as shown by Schlieren imaging, acetone planar laser scattering, and the static pressure profile on the test section wall.
机译:论文证明了利用中等强度磁场强迫的低电流直流压缩表面放电在空气中控制冲击波-湍流边界层相互作用的潜力。实验是在Mach 2.6进气管中进行的,放电电流高达300 mA,磁场强度高达5 Tesla。位于表面电极对面的壁上的菱形冲击波发生器会产生分离和非分离引起的冲击,并通过schlieren成像,静态壁压探头和丙酮流动可视化来测量流动特性。此外,还开发了一种有效的,时间相关的二维Navier-Stokes数值代码,用于空气中的冲击波边界层相互作用。为了复制在高雷诺数下进行的实验,该代码分为与时间无关和与时间有关的机制,以显着减少计算时间。等离子体控制对边界层分离的影响取决于洛伦兹力的方向(j&d16; xB&d16;)。观察到,通过使用在上游推动放电的洛伦兹力,即使在3 Tesla磁场中的放电电流低至30 mA时,也可以诱导或进一步加强分离。如果存在冲击引起的分离,可以观察到通过使用将放电推向下游的洛伦兹力可以抑制分离,但是这需要大于80 mA的更高电流。使用丙酮平面激光散射对测试部分中的流动结构进行成像,并根据驱动电流和磁场强度通过实验观察到再循环气泡尺寸的减小和消除。计算结果与实验结果吻合良好,如Schlieren成像所示的流动结构,丙酮平面激光散射和测试截面壁上的静压力曲线。

著录项

  • 作者

    Kalra, Chiranjeev Singh.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Aerospace.;Physics Electricity and Magnetism.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号