首页> 外文学位 >Genetic investigation of Nogo and Nogo-66 receptor function: Focus on spinal cord injury.
【24h】

Genetic investigation of Nogo and Nogo-66 receptor function: Focus on spinal cord injury.

机译:Nogo和Nogo-66受体功能的遗传研究:专注于脊髓损伤。

获取原文
获取原文并翻译 | 示例

摘要

Traumatic axonal injury in the adult mammalian central nervous system (CNS) normally results in loss of electrical conductance and significant functional deficits. Unlike peripheral neurons, central neurons fail to mount an adequate regenerative response once their axons are severed from their targets. This failure of regeneration of central axons is largely attributable to extrinsic factors present in the extracellular milieu of the CNS. Non-neuronal factors such as the astroglial scar and neurite outgrowth inhibitory molecules such as Nogo, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgp), and chondroitin-sulfate proteoglycans (CSPG) are all implicated in restricting the regrowth of axons.; Nogo is a recently cloned member of the reticulon family of proteins that is expressed in CNS myelin and has been characterized as a potent inhibitor of neurite extension in vitro. In addition to a non-cell type-specific inhibitory domain near the amino terminus called Amino-Nogo, a 66-residue extracellular loop domain of Nogo (Nogo-66) signals growth cone collapse and neurite outgrowth inhibition via high-affinity interaction with a Nogo-66 receptor (NgR) found on axons.; Here, I have focused on the genetic investigations of the in vivo role of the Nogo/NgR system in axon regeneration. I show that ectopic overexpression of the shortest isoform of Nogo containing Nogo-66 in Schwann cells of the peripheral nervous system (PNS), results in a marked delay in peripheral axon regeneration and functional recovery in transgenic mice compared to wild type littermates, confirming the sufficiency of the loop domain in hindering neurite outgrowth in vivo. Furthermore, genetic manipulation of the Nogo and NgR loci allowed the generation of two knockout mouse lines. Both knockout lines were characterized and homozygotes were found to have enhanced axonal regeneration and functional recovery in models of spinal cord injury as compared to their heterozygotic or wild type littermates. Taken together, these findings strongly suggest that Nogo-66 and NgR have principal roles in limiting axon regeneration following CNS injury, and that interfering with their signaling may find beneficial clinical applications in a spectrum of neurological conditions, including spinal cord injury, brain trauma, and stroke. Further lines of inquiry into the phenotype of these knockout mice may shed new light into the normal physiological roles of Nogo-NgR interactions and help uncover caveats to potentially therapeutic but long-term strategies aimed at disrupting their function.
机译:成人哺乳动物中枢神经系统(CNS)的创伤性轴突损伤通常会导致电导率丧失和明显的功能缺陷。与周围神经元不同的是,一旦中枢神经元的轴突从靶标上切断,便无法产生足够的再生反应。中枢轴突再生的失败主要归因于存在于中枢神经系统细胞外环境中的外在因素。非神经元因子,例如星形胶质瘢痕和神经突生长抑制分子,例如Nogo,髓磷脂相关糖蛋白(MAG),少突胶质细胞髓磷脂糖蛋白(OMgp)和软骨素硫酸盐蛋白聚糖(CSPG),都与限制神经胶质细胞的再生有关。轴突。 Nogo是最近在中枢神经系统髓磷脂中表达的网状蛋白质家族的克隆成员,并已被表征为体外有效的神经突延伸抑制剂。除了靠近氨基末端的称为Amino-Nogo的非细胞类型特异性抑制域外,Nogo的66个残基的胞外环域(Nogo-66)还通过与细胞表面的高亲和力相互作用,信号表明生长锥塌陷和神经突向外生长抑制。在轴突上发现了Nogo-66受体(NgR)。在这里,我专注于Nogo / NgR系统在轴突再生中体内作用的遗传研究。我发现异位最短的Nogo亚型异位表达在周围神经系统(PNS)的Schwann细胞中含有Nogo-66,与野生型同窝仔相比导致转基因小鼠外周轴突再生和功能恢复显着延迟。环结构域在体内阻碍神经突生长的充分性。此外,对Nogo和NgR基因座的遗传操作允许生成两个基因敲除小鼠品系。与杂合子或野生型同窝仔相比,两种敲除品系均具有特征,并且发现纯合子在脊髓损伤模型中具有增强的轴突再生和功能恢复。综上所述,这些发现强烈表明Nogo-66和NgR在限制CNS损伤后轴突再生中起主要作用,并且干扰它们的信号传导可在一系列神经系统疾病中找到有益的临床应用,包括脊髓损伤,脑外伤,和中风。对这些基因敲除小鼠的表型的进一步研究可能会为Nogo-NgR相互作用的正常生理作用提供新的线索,并有助于揭示潜在的治疗性但旨在破坏其功能的长期策略的警告。

著录项

  • 作者

    Kim, Ji-Eun.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;
  • 关键词

  • 入库时间 2022-08-17 11:45:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号