首页> 外文学位 >Functional analysis of cryptochromes in the Xenopus laevis retinal circadian clock.
【24h】

Functional analysis of cryptochromes in the Xenopus laevis retinal circadian clock.

机译:非洲爪蟾视网膜昼夜节律时钟中隐色色素的功能分析。

获取原文
获取原文并翻译 | 示例

摘要

Cryptochromes are found in many organisms including plants, insects, amphibians, birds, and mammals. Studies show that all cryptochromes function in circadian clock. However, their functions in these organisms are different. In Drosophila and plants, cryptochromes are responsible for circadian photoreception. In mammals, they are part of the oscillator. To study why these conserved protein function differently, I analyzed the roles of cryptochromes in Xenopus laevis, as the organism provides an evolutionary intermediate between flies and mice.; In addition to the similarity to cryptochromes from other species, Xenopus cryptochromes are also very closely related to Xenopus 6-4 photolyase which repairs UV light damaged DNA. Although the only extended difference in sequence between cryptochrome and photolyase is the presence of an extra carboxyl tail in cryptochrome, the cryptochrome and photolyase have mutually exclusive functions.; In this study, I cloned cryptochromes and characterized their expression profiles in Xenopus laevis retina (Chapter II). I examined the roles of conserved functional domains between cryptochrome and photolyase and between cryptochromes from different organisms. My results show that most of these domains are crucial for cryptochrome function (Chapter III). Therefore, despite vastly different functions, how cryptochromes and photolyases function biochemically appear to be quite similar. I also tested the role of cryptochrome's extended carboxyl terminal sequence. I found the tail can regulate cryptochrome subcellular localization possibly through specific protein interaction (Chapter IV).; In total, this work provides insights on how Xenopus cryptochromes function in the retinal clock. Overall, Xenopus and mouse clocks utilize similar proteins. CLOCK/BMAL1 from both species can activate the E-box containing promoters. And both mCRYs and xCRYs can suppress this activation. Since these activation and suppression steps are believed to comprise the central oscillator of the vertebrate animal, this indicates that molecular aspect of the clock is similar in mouse and Xenopus laevis. However, there are some marked differences in their gene expression profiles which suggest that there might be some subtle differences between the Xenopus retinal clock and mouse SCN clock. My mutagenesis analyses also indicate that they have some distinct ways to utilize conserved functional domains.
机译:在许多生物中都发现了隐色,包括植物,昆虫,两栖动物,鸟类和哺乳动物。研究表明,所有隐色染料均在生物钟中起作用。但是,它们在这些生物中的功能是不同的。在 Drosophila 和植物中,隐花色素负责昼夜节律的光接收。在哺乳动物中,它们是振荡器的一部分。为了研究为什么这些保守的蛋白质发挥不同的功能,我分析了隐色色素在中的作用,因为该生物体在果蝇和小鼠之间提供了进化的中间产物。除了与其他物种的隐色染料相似外,爪蟾隐色染料还与爪蟾 6-4光解酶密切相关,后者修复了紫外线受损的DNA。尽管隐花色素和光裂解酶之间唯一的序列差异是隐花色素中存在额外的羧基尾基,但隐花色素和光裂解酶具有互斥的功能。在这项研究中,我克隆了隐色染料,并表征了它们在非洲爪蟾视网膜中的表达谱(第二章)。我研究了隐花色素和光裂解酶之间以及来自不同生物体的隐花色素之间保守功能域的作用。我的结果表明,这些域中的大多数对隐色功能至关重要(第三章)。因此,尽管功能大不相同,但隐色染料和光解酶在生化上的功能似乎非常相似。我还测试了隐花色素的扩展羧基末端序列的作用。我发现尾巴可能通过特定的蛋白质相互作用来调节隐色亚细胞的定位(第四章)。总的来说,这项工作提供了关于非洲爪蟾隐色染料如何在视网膜时钟中发挥作用的见解。总体而言,非洲爪蟾和鼠标时钟都利用类似的蛋白质。两种物种的CLOCK / BMAL1均可激活包含E-box的启动子。而且,mCRY和xCRY都可以抑制这种激活。由于这些激活和抑制步骤被认为是脊椎动物的中心振荡器,因此这表明时钟的分子方面在小鼠和中相似。但是,它们的基因表达谱存在明显差异,这表明非洲爪蟾视网膜时钟和小鼠SCN时钟之间可能存在细微的差异。我的诱变分析还表明,他们有一些利用保守功能域的独特方法。

著录项

  • 作者

    Zhu, Haisun.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Biology Molecular.; Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 215 p.
  • 总页数 215
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;神经科学;
  • 关键词

  • 入库时间 2022-08-17 11:45:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号