首页> 外文学位 >Free energy functions in protein structural stability and folding kinetics.
【24h】

Free energy functions in protein structural stability and folding kinetics.

机译:自由能在蛋白质结构稳定性和折叠动力学中起作用。

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of the theoretical description of protein folding and protein interactions is directly related to the accuracy of free energy functions developed for describing biological macromolecules. In particular, free energy of the native conformation should be lower than free energies of arbitrary misfolded models (decoys). Furthermore, in the process of protein folding the computed free energy of the transition state, and its location on the landscape of all protein conformations should correctly reproduce experimentally observed kinetic rates and folding pathways. Finally, biomolecular free energies should reflect the fact that native amino acid sequences are on average energetically optimized for their structures. In this work, free energy functions are developed that are suitable for problems of protein structure prediction, protein-protein docking (interactions across a common interface), folding kinetics and sequence design (both for monomeric proteins and protein-protein complexes). In Chapter 2, an empirical hydrogen bonding potential is presented, and native amino acid recovery profiles are used as a test of its performance. In Chapter 3, this hydrogen bonding potential is employed in the context of a simple physical model of protein folding kinetics. The model is applied to predicting kinetic folding rates and transition state structures on a set of monomeric proteins, and its performance is assessed versus available experimental data. In Chapter 4, the role of electrostatics and hydrogen bonding interactions is investigated with respect to the protein structure prediction and protein docking problems. Extensive decoy sets developed for the purpose of free energy function evaluation are used to gain insight into the usefulness and limitations of continuum electrostatics models in molecular biology. Protein structure prediction and docking problems also provide further tests of the hydrogen bonding potential developed in Chapter 2. Finally, Chapter 5 provides a brief summary of some of our findings, with the emphasis on the limitations of current approaches to biomolecular modeling, and suggests directions of future research based on using ab initio electronic structure methods for studying energetics of biological macromolecules.
机译:蛋白质折叠和蛋白质相互作用的理论描述的准确性与开发用于描述生物大分子的自由能函数的准确性直接相关。特别是,天然构象的自由能应低于任意错误折叠模型(诱饵)的自由能。此外,在蛋白质折叠的过程中,计算出的过渡态自由能及其在所有蛋白质构象上的位置应正确再现实验观察到的动力学速率和折叠途径。最后,生物分子自由能应反映以下事实:天然氨基酸序列在结构上平均得到了能量优化。在这项工作中,开发了适用于蛋白质结构预测,蛋白质-蛋白质对接(跨公共界面的相互作用),折叠动力学和序列设计(均用于单体蛋白质和蛋白质-蛋白质复合物)的问题的自由能函数。在第2章中,给出了经验氢键势,并使用天然氨基酸回收曲线作为其性能的测试。在第3章中,在简单的蛋白质折叠动力学物理模型中使用了这种氢键势。该模型用于预测一组单体蛋白的动力学折叠速率和过渡态结构,并与可用的实验数据进行比较来评估其性能。在第4章中,针对蛋白质结构预测和蛋白质对接问题研究了静电和氢键相互作用的作用。为评估自由能功能而开发的大量诱饵集可用于深入了解分子生物学中连续静电模型的有用性和局限性。蛋白质结构的预测和对接问题还提供了对第2章中开发的氢键连接潜力的进一步测试。最后,第5章对我们的一些发现进行了简要总结,重点强调了当前生物分子建模方法的局限性,并提出了方向基于从头算电子结构方法研究生物大分子能量学的未来研究。

著录项

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Physics Condensed Matter.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号