首页> 外文学位 >Forward and inverse numerical modeling of fluid flow in a faulted reservoir: Inference of spatial distribution of the fault transmissibility.
【24h】

Forward and inverse numerical modeling of fluid flow in a faulted reservoir: Inference of spatial distribution of the fault transmissibility.

机译:断层储层中流体流动的正向和反向数值模拟:断层可传递性的空间分布推断。

获取原文
获取原文并翻译 | 示例

摘要

A finite element numerical model was used to analyze a quasi-steady-state, three-dimensional hydraulic head distribution measured in the vicinity of a fault partially displacing the Hickory aquifer system in central Texas. The spatial distribution of permeability of major stratigraphic units and fault rock was obtained utilizing kriging, forward modeling and geophysical inverse modeling. Core-scale permeability data, quasi-steady-state hydraulic head data and full-reservoir pump test data were used for analysis. The final permeability model provides a close match to the observed hydraulic head distribution with a correlation coefficient of 0.88.; The fault-rock permeability varies systematically with the spatial position along the fault from a maximum of 20 and to a minimum of 0.0001 md. The highest permeabilities of 10–20 and (a 50-fold reduction of the sandstone protolith permeability) occur in the lowest portion of the fault, where the fault displaces sandstone-dominant strata. Pump test data also clearly show fluid flow is focused through this region of the fault. The fault-rock permeability decreases progressively up dip along the fault in a fashion closely reflecting the increase of mudstone strata cut by the fault. Where the mudstone-rich Lower Middle Hickory is faulted against the sandstone-dominant Lower Hickory, permeabilities of 4 and are inferred. Where the mudstone-rich Lower Middle Hickory is faulted against itself, the permeability is 0.03 md.; The 10–20 and permeability inferred in the lower part of the fault is about a factor of 10 greater than that inferred from core-scale measurements of fault-rock samples as well as from earlier simple 1-D model estimates. This difference may reflect upscaling issues, but additional analysis is needed to more definitively reconcile the different estimates.; Multilevel monitoring systems provide a direct measure of effects of faults and stratigraphic heterogeneities upon fluid flow in an aquifer. Variations of drawdown histories in zones straddling a fault permit identification of delay times and changes in the functional form of the response curves associated with the fault. Analysis of vertical gradient variation with time allows one to separate hydraulic responses of the zones straddling low permeability faults, resolve geometry of the faulted region and obtain additional constraints for conceptual model and defining parameters.
机译:使用有限元数值模型来分析在德克萨斯州中部Hickory含水层系统部分位移的断层附近测得的准稳态三维水力压头分布。利用克里金法,正演模拟和地球物理反演等方法获得了主要地层单元和断层岩渗透率的空间分布。使用岩心尺度渗透率数据,准稳态水压头数据和全油藏泵测试数据进行分析。最终的渗透率模型提供了与观测到的水头分布的紧密匹配,相关系数为0.88。断层岩石渗透率随沿断层的空间位置从最大值20到最小值0.0001 md系统地变化。最高的渗透率为10–20,并且(砂岩原生岩的渗透率降低了50倍)发生在断层的最低部位,在该部位断层驱替了以砂岩为主的地层。泵测试数据还清楚地表明,流体流集中在故障的这一区域。断层岩石渗透率沿断层向上倾斜的方式逐渐减小,这反映了断层切割的泥岩地层的增加。如果富泥岩的下山胡桃木相对于以砂岩为主的下山胡桃断裂,则渗透率为4,并且可以推断出。当富泥岩的下中山胡桃体自身断裂时,渗透率为0.03 md。在断层下部推断出的10-20和渗透率大约比从断层岩样的岩心尺度测量以及早期简单的一维模型估计推断出的要大10倍。这种差异可能反映了升级问题,但是需要进行更多分析才能更明确地调和不同的估计。多级监测系统可直接测量断层和地层非均质性对含水层中流体流动的影响。跨越断层的区域中垂降历史的变化允许识别延迟时间以及与断层相关的响应曲线的功能形式的变化。对垂直梯度随时间变化的分析使人们能够分离跨越低渗透率断层的区域的水力响应,解析断层区域的几何形状,并获得概念模型和定义参数的附加约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号