首页> 外文学位 >Materials simulations at the atom-continuum interface: Dislocation mobility and notched fracture initiation.
【24h】

Materials simulations at the atom-continuum interface: Dislocation mobility and notched fracture initiation.

机译:原子-连续谱界面处的材料模拟:位错迁移率和缺口断裂引发。

获取原文
获取原文并翻译 | 示例

摘要

We have solved three problems with a common theme of interfacing atomistic models with continuum models. The first is measuring the Peierls barrier for dislocation glide in a two dimensional material. The key features of this work are (1) efficient extrapolation of the infinite system limit from small simulations, through the use of multipole relaxation at the atom-continuum interface, and (2) the representation of the dependence on external parameters (in this case applied stress) in a compact way using a physically motivated functional form. The second problem is the initiation of fracture at sharp notches in single crystal silicon, a problem of current experimental interest in microfabrication. It is found that when expressed in atomic-scale units the critical stress intensity factor is almost independent of notch opening angle, as long as the interatomic potential does, in fact, produce brittle fracture. The third problem is the challenge of incorporating atomistic simulations in an adaptive manner in large scale continuum (finite element) simulations. Our method involves embedding such simulations within elements in an overlapping sense, and avoids some of the complexity associated with alternative methods. We solve these three problems through the development of a flexible, modern, powerful molecular dynamics package, known as DigitalMaterial. We describe the design of the software, which is fully object-oriented. What makes this package different from others is the use of a component-based approach based on software engineering methods known as Design Patterns. The interfaces for these components are very clearly defined, allowing components to be interoperable and to be easily driven from a high level scripting environment.
机译:我们已经解决了三个问题,它们的共同主题是将原子模型与连续模型相连接。第一种方法是测量二维材料中位错滑移的Peierls势垒。这项工作的关键特征是(1)通过在原子连续谱界面上使用多极弛豫,通过小型仿真有效地推论无限系统极限,以及(2)表示对外部参数的依赖性(在这种情况下施加压力)以紧凑的方式使用物理激励功能形式。第二个问题是单晶硅尖锐缺口处的断裂引发,这是当前微细加工中实验关注的问题。发现以原子级单位表示时,只要原子间电势确实会产生脆性断裂,则临界应力强度因子几乎与切口的张开角无关。第三个问题是在大型连续体(有限元)模拟中以自适应方式合并原子模拟的挑战。我们的方法涉及以重叠的方式将此类模拟嵌入元素中,并避免了与替代方法相关的某些复杂性。我们通过开发称为DigitalMaterial的灵活,现代,功能强大的分子动力学程序包来解决这三个问题。我们描述了完全面向对象的软件设计。使该程序包与众不同的原因是使用基于组件的方法,该方法基于称为设计模式的软件工程方法。这些组件的接口定义非常明确,从而使组件可以互操作,并可以从高级脚本环境轻松驱动。

著录项

  • 作者

    Bailey, Nicholas Patrick.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Physics Condensed Matter.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5899
  • 总页数 320
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

  • 入库时间 2022-08-17 11:45:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号