首页> 外文学位 >The dynamic growth of voids in viscoplastic materials.
【24h】

The dynamic growth of voids in viscoplastic materials.

机译:粘塑性材料中空隙的动态增长。

获取原文
获取原文并翻译 | 示例

摘要

This work seeks to examine the dynamic growth of voids in an elastic-viscoplastic medium through analytical and numerical approaches, with a view towards addressing a number of problems that arise during the dynamic failure of metals. Particular attention is paid to the instability of void growth, and to the effects of inertia, rate-dependence, thermal softening, heat conduction, plastic strain gradient and (less completely) void-void interactions on void growth.; A critical stress is known to exist for the unstable growth of voids. The dependence of this critical stress on material properties (such as strain hardening, thermal softening and yield strain) is examined, and this critical stress is demonstrated to correspond to the lower limit for the ductile spall strength in many metals. Once the concept of the critical stress is adopted, an asymptotic solution is then obtained for the dynamic growth of voids under supercritical loading in elastic-viscoplastic materials. The asymptotic solution shows that voids of all sizes will eventually achieve the same growth rate for a given steady applied loading. Consequently, voids will grow rapidly towards similar sizes regardless of the differences in their initial sizes, explaining the void size distributions typically found on ductile fracture surfaces. Under an extremely high loading, the void growth rate is increased significantly, therefore, the time for voids to grow to the full sizes observed on fracture surfaces will be much shorter, e.g., a few nanosecond in laser spallation. Both rate-dependence and heat conduction reduce the rate of void growth and have stronger effects on smaller voids. As the voids start rapid growth, however, the effects of rate dependence and heat conduction on void growth decrease, so that they eventually give way to the dominating effects of inertia. In addition to the stabilizing effects of inertia, which have been traditionally recognized, our results show that for sustained subcritical loading the effect of inertia first impedes but later facilitates the growth of voids in the long term.; We have also developed a gradient plasticity theory incorporating temperature effects. A strong size-dependence is introduced into the dynamic growth of voids through gradient plasticity, so that a cut-off size is set by the stress level of the applied loading. Only those voids that are initially larger than the cut-off size can grow rapidly. Once the voids start rapid growth, however, the influence of strain gradients will decrease. Therefore, the rate of dynamic void growth predicted by strain gradient plasticity approaches that predicted by classical plasticity theories.
机译:这项工作旨在通过分析和数值方法研究弹性粘塑性介质中空隙的动态增长,以期解决金属动态破坏过程中出现的许多问题。尤其要注意空隙生长的不稳定性,以及惯性,速率依赖性,热软化,导热,塑性应变梯度和空隙生长上空隙空隙相互作用的影响。已知存在空隙不稳定生长的临界应力。检查了该临界应力对材料性能(例如应变硬化,热软化和屈服应变)的依赖性,并且该临界应力被证明对应于许多金属的延展性剥落强度的下限。一旦采用了临界应力的概念,就可以为弹性粘塑性材料中的超临界载荷下空隙的动态增长提供渐近解。渐近解表明,对于给定的稳定施加的载荷,所有大小的空隙最终将实现相同的增长率。因此,空隙将迅速增长到相似的大小,而不管它们的初始大小如何不同,这解释了通常在延性断裂表面上发现的空隙大小分布。在极高的载荷下,空隙的生长速度显着增加,因此,空隙生长到破裂表面上观察到的最大尺寸的时间将大大缩短,例如在激光剥落中要几纳秒。速率依赖性和热传导都降低了空洞的生长速率,并且对较小的空洞具有更强的影响。但是,随着空洞开始快速生长,速率依赖性和热传导对空洞生长的影响减小,因此最终让位于惯性的主要作用。除了传统上公认的惯性稳定作用外,我们的结果表明,对于持续的亚临界载荷,惯性作用首先会阻止,但随后会长期促进空洞的增长。我们还开发了一种结合温度效应的梯度可塑性理论。通过梯度可塑性将强的尺寸依赖性引入到空隙的动态生长中,以便通过施加的载荷的应力水平来设置截止尺寸。只有最初大于截止尺寸的空隙才能快速增长。但是,一旦空隙开始快速增长,应变梯度的影响就会减小。因此,由应变梯度可塑性预测的动态空隙生长速率接近经典可塑性理论所预测的速率。

著录项

  • 作者

    Wu, Xiaoyi.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.4868
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号