首页> 外文学位 >Quantitative reconstruction for brain SPECT with fan-beam collimators.
【24h】

Quantitative reconstruction for brain SPECT with fan-beam collimators.

机译:扇形光束准直器对脑SPECT的定量重建。

获取原文
获取原文并翻译 | 示例

摘要

SPECT (single photon emission computed tomography) is well known for its providing functional information of fairly good quality and its relatively low cost in diagnosis. It is one of the most important modalities to demonstrate the blood flow, the perfusion, and oxygen and glucose metabolic activities. However, there are several inherent factors in current available systems that degrade the quality of reconstructed images, among which the absorption of γ-rays by the body and the non-stationary detector blurring effect due to collimation/scintillation process are two major ones. Non-parallel collimations such as fan-beam geometry designed to improve the detection resolution and sensitivity makes the image reconstruction even more complicated. To date, the methods to deal with both attenuation and detector blurring effects are based on iterative algorithms, which are approximated and time consuming. Our aim is to find a more efficient and accurate method to solve this problem in a specific application—brain SPECT.; The described reconstruction procedure has been shown to be an optimal solution to the problem of fan-beam brain SPECT imaging in terms of both the computational efficiency and the accuracy. It has been validated by the mathematical disks phantom, Shepp-Logan phantom and Hoffman brain phantom using Monte Carlo simulations. Results showed satisfactory reconstructions of the phantoms, and the computation time is less than 10 minutes for a 128 x 128 x 64 volumetric image on a Pentium III 550MHz PC platform. The method is compared with two other methods, one uses the frequency distance relation (FDR) for deconvolving the PSF blurring effect after the same noise and scatter treatment, then uses exponential weighted filtered backprojection method to reconstruct the uniformly attenuated projection; the other uses the ordered subset expectation maximization (OSEM) iterative algorithm with all degradation factor accurately modeled inside. The comparisons show that the CHD-CG method along with accurate noise modeling and scatter compensation could achieve the same image quality as the OSEM iterative method with improved computation efficiency. The OSEM reconstruction for the same image volume on a same PC platform needs more than 8 hours. Quantitative analysis on regional bias-variance, ROC (receiver operating characteristic) study, and Hotelling trace calculation are also evaluated for these methods, which show comparable performance between the proposed method and the OSEM iterative method in term of defect detectability. Most of the images in this dissertation are generated by C/C++ program under Windows system, other plots are calculated with MATLAB, and the Monte Carlo simulation uses FORTRAN codes running under UNIX system. (Abstract shortened by UMI.)
机译:SPECT(单光子发射计算机断层扫描)以其提供质量相当好的功能信息以及诊断成本相对较低而闻名。这是证明血流量,灌注以及氧和葡萄糖代谢活动的最重要方式之一。但是,在当前可用系统中,有几个固有因素会降低重构图像的质量,其中,人体吸收γ射线和由于准直/闪烁过程导致的非平稳探测器模糊效应是两个主要因素。非平行准直(例如扇形光束几何形状)旨在提高检测分辨率和灵敏度,使图像重建更加复杂。迄今为止,处理衰减和检测器模糊效应的方法都是基于迭代算法的,该算法是近似且耗时的。我们的目标是找到一种更有效,更准确的方法来解决特定应用(大脑SPECT)中的此问题。就计算效率和准确性而言,所描述的重建程序已被证明是扇形束脑SPECT成像问题的最佳解决方案。使用蒙特卡洛模拟,已通过数学磁盘体模,Shepp-Logan体模和Hoffman脑部体模对它进行了验证。结果显示了令人满意的幻像重建,在奔腾III 550MHz PC平台上,对于128 x 128 x 64体积图像的计算时间不到10分钟。将该方法与其他两种方法进行了比较,一种方法是使用频率距离关系(FDR)对相同噪声和散射处理后的PSF模糊效果进行反卷积,然后使用指数加权滤波反投影方法重建均匀衰减的投影。另一种使用有序子集期望最大化(OSEM)迭代算法,并在内部精确建模了所有退化因子。比较表明,CHD-CG方法以及精确的噪声建模和散射补偿可以实现与OSEM迭代方法相同的图像质量,并提高了计算效率。在同一PC平台上针对相同图像量进行OSEM重建需要超过8个小时。对于这些方法,还对区域偏差方差,ROC(接收器工作特性)研究和霍特林迹线计算进行了定量分析,这些方法在缺陷可检测性方面显示了所提方法和OSEM迭代方法的可比性。本文的大部分图像是由Windows系统下的C / C ++程序生成的,其他图是使用MATLAB计算的,Monte Carlo仿真使用的是在UNIX系统下运行的FORTRAN代码。 (摘要由UMI缩短。)

著录项

  • 作者

    Li, Tianfang.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Physics Nuclear.; Health Sciences Radiology.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.271
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号