首页> 外文学位 >Molecular mechanisms of space related bone loss.
【24h】

Molecular mechanisms of space related bone loss.

机译:与空间有关的骨丢失的分子机制。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical loading is a major player in the maintenance of a normal bone phenotype. Increasing load or force on bone promotes bone formation while decreasing load promotes bone loss. The molecular events mediating responses to alterations in skeletal loading are largely unknown. My thesis focuses on determining the molecular effects of altered mechanical load on bone forming osteoblasts using a system of decreased load.; The NASA designed rotating wall vessel (RWV) allows for the culture of cells in solid phase rotation around a horizontal axis such that gravity vectors are randomized to near zero thereby modeling microgravity. Osteoblasts exposed to 24 hours of RWV conditions exhibit suppressed expression of markers of osteoblast differentiation, namely alkaline phosphatase and osteocalcin. Furthermore, transcription factors that regulate the expression of these genes and progression to a fully differentiated osteoblast are also suppressed in the RWV. Specifically, c-fos and c-jun expression, members of the AP-1 family, are suppressed after 24 hours of RWV culture. Consistent with this finding AP-1 DNA binding and transactivation are suppressed. The osteoblast transcription factor runx2 displays similar effects to AP-1 in modeled microgravity conditions. After 24 hours of RWV culture, runx2 mRNA levels are decreased along with runx2 DNA binding and runx2 promoter activation. This demonstrates that conditions of decreased loading may be involved in suppressed osteoblast phenotype through alterations in transcription factor activities.; While the RWV models microgravity, there is also a hypoxic component associated with the culture of differentiating osteoblasts. To uncouple the effects of hypoxia from modeled microgravity, external oxygen was supplied to RWV cultured cells to normoxia. Under normoxia, the suppression of c-fos, c-jun, and runx2 expression does not occur suggesting that the hypoxic component of the RWV and not modeled microgravity mediates the initial suppression of these genes we observed. Interestingly, skeletal unloading induces a hypoxic microenvironment to which bone cells are subjected. My findings suggest that bone loss associated with unloading, as seen during space flight, may be directly due to hypoxia.
机译:机械负荷是维持正常骨表型的主要因素。增加负载或施加在骨骼上的力会促进骨骼的形成,而降低负载会导致骨骼流失。分子事件介导对骨骼负荷变化的反应很大程度上是未知的。我的论文集中在使用降低的负荷系统确定改变的机械负荷对成骨成骨细胞的分子效应。 NASA设计的旋转壁容器(RWV)允许细胞围绕水平轴进行固相旋转培养,从而使重力矢量随机化至接近零,从而对微重力进行建模。暴露在RWV条件下24小时的成骨细胞抑制成骨细胞分化的标志物碱性磷酸酶和骨钙素的表达。此外,在RWV中也抑制了调节这些基因表达并发展为完全分化的成骨细胞的转录因子。具体地说,在RWV培养24小时后,AP-1家族的c-fos和c-jun表达被抑制。与此发现一致,抑制了AP-1 DNA的结合和反式激活。成骨细胞转录因子runx2在模拟微重力条件下显示与AP-1类似的作用。 RWV培养24小时后,runx2 mRNA水平随着runx2 DNA结合和runx2启动子激活而降低。这表明负荷降低的条件可能通过转录因子活性的改变而抑制了成骨细胞的表型。尽管RWV模拟微重力,但也存在与分化成骨细胞培养相关的低氧成分。为了从模型微重力中消除缺氧的影响,向RWV培养的细胞提供了外部氧气,使其恢复正常。在常氧下,不会发生c-fos,c-jun和runx2表达的抑制,这表明RWV的低氧成分和未建模的微重力介导了我们观察到的这些基因的初始抑制。有趣的是,骨骼卸载会导致骨细胞遭受缺氧的微环境。我的发现表明,如在太空飞行中所见,与卸载相关的骨质流失可能直接归因于缺氧。

著录项

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Biology Cell.; Biology Molecular.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5888
  • 总页数 255
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号