首页> 外文学位 >Effects of woody encroachment on savanna nitrogen dynamics: Combining biogeochemistry and remote sensing (Texas).
【24h】

Effects of woody encroachment on savanna nitrogen dynamics: Combining biogeochemistry and remote sensing (Texas).

机译:木本植物入侵对热带稀树草原氮动态的影响:结合生物地球化学和遥感(德克萨斯州)。

获取原文
获取原文并翻译 | 示例

摘要

Woody encroachment, the increase of woody plant density relative to herbaceous vegetation, has contributed to documented biophysical and biogeochemical changes world-wide, and locally in the southwestern U.S. In North Texas rangelands, encroaching mesquite (Prosopis glandulosa var. glandulosa ), a known nitrogen (N)-fixing species, has caused changes in aboveground biomass. However, the impacts of woody encroachment on N cycling have not been well studied, despite the central role that N dynamics play in controlling carbon (C) cycling and many other ecological processes across all spatial scales from microbial soil processes to global plant productivity. Airborne remote sensing is arguably the only approach available to develop a spatially-explicit understanding of ecosystem processes. The main goal of this research was to determine whether remotely sensible parameters of vegetation structure could be used to quantify biogeochemical changes in N at the local, landscape and regional scale.; To accomplish this goal, I first characterized the impact of woody encroachment on soil nitrogen oxide (nitric-NO and nitrous-N2O oxide) emissions. I examined biotic (vegetation type and soil organic and inorganic N dynamics) and abiotic (soil moisture, temperature, and soil texture) controls over soil NO and N2O emissions across a gradient of aboveground (AG) Prosopis biomass growing on two soil types.; I concluded that mesquite encroachment in these grasslands increased NO emissions in a spatially explicit manner influenced by the AG biomass and soil type, which was then temporally mediated by temperature and secondarily by precipitation.; Based on these results, I combined hyperspectral remote sensing and field measurements to quantify spatial patterns and to estimate regional fluxes of soil NO emissions across 120 km2 of semi-arid rangeland in North Texas. This analysis captured the high spatial variability of NO emissions as they co-varied with vegetation cover and soil type across the region. I concluded that relationships between NO emissions and remotely sensed structure and composition are advantageous for quantifying NO emissions at the regional scale. Linking emissions rates to remotely-sensible vegetation parameters also provided a means to quantify the role of land use (e.g. brush management) on biogeochemical processes which, are highly variable and otherwise difficult to measure at the regional scale.; Finally, an assessment of the ecosystem N status following woody encroachment was conducted. Differences in N associated with woody and herbaceous canopies—often used to assess the magnitude of changes attributed to woody encroachment—were readily distinguishable in the systems of low overall N status. These relative differences lessened as gross N quantity increased.; Nitrogen is considered to be the most limiting nutrient to plant production in terrestrial ecosystems world-wide. The concept that increased N inputs via biological N fixation by woody plants such as Prosopis could alter the long-term balance of N in an ecosystem relative to that required for plant production is not new. However, measurement of N inputs relative to plant N requirement is difficult, and in the context of recent woody expansion into grasslands, may not capture short-term changes in N dynamics that impact the long-term trajectories of ecosystem development. The results presented in this thesis provide an understanding of the impacts of woody encroachment on N dynamics, which potentially affect the long-term structure and function of arid and semi-arid ecosystems. (Abstract shortened by UMI.)
机译:木本植物的侵染,即木本植物密度相对于草本植物的增加,已促成世界各地以及美国西南部局部地区在德克萨斯州北部草原上的生物物理和生物地球化学变化的记录,侵蚀了豆科灌木植物( Prosopis glandulosa var 。(italic> glandulosa ),一种已知的固氮(N)物种,已引起地上生物量的变化。然而,尽管氮动力学在控制从微生物土壤过程到全球植物生产力的所有空间尺度上的碳(C)循环和许多其他生态过程中起着核心作用,但尚未充分研究木质侵害对氮循环的影响。可以说,机载遥感是发展空间明确了解生态系统过程的唯一可用方法。这项研究的主要目的是确定是否可以使用遥感结构参数来量化局部,景观和区域尺度上氮的生物地球化学变化。为了实现这个目标,我首先描述了木质侵蚀对土壤氮氧化物(一氧化氮和一氧化二氮N 2 O氧化物)排放的影响。我研究了生物(植被类型以及土壤有机和无机氮的动态变化)和非生物(土壤水分,温度和土壤质地)在地上梯度(AG)上对土壤NO和N 2 O排放的控制在两种土壤上生长的 Prosopis 生物量。我得出的结论是,这些草地上的豆科植物入侵在空间上明显受到AG生物量和土壤类型的影响,从而增加了NO排放,然后在时间上由温度介导,其次由降水介导。基于这些结果,我结合了高光谱遥感和野外测量来量化空间格局,并估算北德克萨斯半干旱牧场120 km 2 上土壤NO排放的区域通量。该分析捕获了NO排放的高空间变异性,因为它们与该地区的植被覆盖率和土壤类型相关。我的结论是,NO排放量与遥感结构和成分之间的关​​系对于量化区域尺度的NO排放量是有利的。将排放率与遥感植被参数联系起来,也提供了一种手段来量化土地利用(例如灌木管理)在生物地球化学过程中的作用,该过程变化很大,否则很难在区域范围内衡量。最后,对木本植物入侵后的生态系统N状况进行了评估。在总体氮素水平较低的系统中,与木质和草本冠层相关的氮素差异(通常用于评估木质侵蚀的变化幅度)很容易区分。这些相对差异随着总氮量的增加而减小。在全世界的陆地生态系统中,氮被认为是限制植物生长的养分。通过木质植物(如<斜体> Prosopis )的生物固氮增加氮输入的概念可能会改变生态系统中氮的长期平衡(相对于植物生产所需的氮)。但是,相对于植物氮需求量来衡量氮输入量是困难的,并且在最近木本植物进入草原的情况下,可能无法捕获氮动态的短期变化,而短期变化会影响生态系统发展的长期轨迹。本文提出的结果提供了对木质侵蚀对氮动力学的影响的理解,这可能会影响干旱和半干旱生态系统的长期结构和功能。 (摘要由UMI缩短。)

著录项

  • 作者

    Martin, Roberta Enders.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Biogeochemistry.; Remote Sensing.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.1655
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物地球化学、气体地球化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号