首页> 外文学位 >Multi-level coarse placement for physical hierarchy generation.
【24h】

Multi-level coarse placement for physical hierarchy generation.

机译:用于物理层次结构生成的多级粗略放置。

获取原文
获取原文并翻译 | 示例

摘要

Recent studies suggest that synthesis and optimization under the physical hierarchy is a promising way to achieve timing closure between synthesis and layout for deep submicron designs. In this PhD dissertation, we focus on how to build a good physical hierarchy for performance optimization. The logical hierarchy is first flattened to the extent that we are certain circuit elements in each module have "physical locality" i.e., the circuits in a module should physically stay together, and then coarse/global placement is performed on this flattened design to place the placeable objects and generate a physical hierarchy. We adopt the multi-level optimization paradigm for it.;First, a multi-level coarse placement framework for physical hierarchy generation, MPG, is developed for wirelength minimization. The placement engine is based on the simulated-annealing technique because of its flexibility of integrating various design objectives and handling constraints. Experiments show that, compared to GORDIAN-L, the wirelength-driven MPG is 3--6 times faster and generates slightly better wirelength for test circuits larger than 100K cells. Compared with wirelength-driven DRAGON, it provides a slightly longer wirelength (2--5%) with 25--50% runtime reduction for large designs.;Second, in order to handle large-scale IC designs with standard cells mixed with blocks, based on MPG, a placement algorithm, MPG-MS, is proposed to simultaneously place objects with large size variations. The big placeable objects are gradually fixed and any overlap between them is gradually removed, while small object placement is further refined during the multi-level optimization process. Experiments on large-scale mixed-size placement benchmarks show that MPG- MS can outperform a recent published work [1] by 13% on average in terms of total wirelength.;Third, in order to handle performance optimization, particularly to use the retiming technique to optimize the long interconnect, a practical solution for integrating retiming into the multi-level global placement for large-scale designs, MPG-RT, is proposed. It is based on the theory and algorithms of sequential timing analysis. Experiments show that (i) retiming can improve the performance (delay) by 14% on average when it is applied after placement; (ii) our approach for simultaneous retiming and placement can outperform the two-step approach (placement followed by retiming) by 10% on average in terms of delay minimization.
机译:最近的研究表明,物理层次结构下的合成和优化是实现深亚微米设计的合成和布局之间时序收敛的一种有前途的方法。在本博士论文中,我们重点介绍如何为性能优化建立良好的物理层次结构。首先将逻辑层次结构展平到一定程度,即每个模块中的某些电路元件具有“物理局部性”,即,模块中的电路应在物理上保持在一起,然后在此展平设计上执行粗略/全局放置以放置放置对象并生成物理层次结构。首先,为线长最小化开发了用于物理层次生成的多级粗放框架MPG。布局引擎基于模拟退火技术,因为它具有集成各种设计目标和处理约束的灵活性。实验表明,与GORDIAN-L相比,线长驱动的MPG快3--6倍,并且对于大于100K电池的测试电路产生的线长稍好。与线长驱动的DRAGON相比,它为大型设计提供了更长的线长(2--5%),减少了25--50%的运行时间;其次,为了处理将标准单元与模块混合在一起的大规模IC设计,基于MPG,提出了一种放置算法MPG-MS,用于同时放置大小变化较大的对象。大的可放置对象逐渐固定,并且它们之间的任何重叠都逐渐消除,而小对象的放置在多级优化过程中进一步完善。大规模混合尺寸放置基准测试表明,MPG-MS的总线长平均可以比最近发表的论文[1]高出13%。第三,为了进行性能优化,尤其是使用重定时提出了一种优化长互连的技术,提出了一种将重定时集成到大规模设计的多层全局布局中的实用解决方案MPG-RT。它基于顺序时序分析的理论和算法。实验表明:(i)重新放置可以在放置后应用时平均将性能(延迟)提高14%; (ii)就延迟最小化而言,我们同时进行重定时和放置的方法可以比两步法(放置后重定时)的性能平均提高10%。

著录项

  • 作者

    Yuan, Xin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号