首页> 外文学位 >Fast multireference configuration interaction: Methods and applications for ground and excited states.
【24h】

Fast multireference configuration interaction: Methods and applications for ground and excited states.

机译:快速多参考配置交互:基态和激发态的方法和应用。

获取原文
获取原文并翻译 | 示例

摘要

This work extends the development and application of local correlation, as pioneered by Pulay and Saebo, within the multireference singles and doubles configuration interaction method (LMRSDCI) in the Carter group. Local correlation techniques are useful in reducing the cost of electronic structure calculations by exploiting the short-ranged nature of electron correlation and hence leaving out insignificant pieces of the wave function based on a spatial criterion. In our original implementation, the occupied orbitals were localized by unitary transformations while the virtual subspace was spanned by non-orthogonal projected atomic orbitals (PAOs). By incorporating numerical screening techniques along with local truncation schemes, we were able to achieve an overall linear scaling method, reduced from its conventional very expensive O(N6) scaling, while retaining chemical accuracy. Subsequently, we carried out further optimizations to our LMRSDCI implementation by replacing the PAOs with localized orthogonal virtual orbitals along with restructuring the rate-limiting step within the diagonalization of the CI Hamiltonian matrix. In addition, we adopted alternative representations of the conventional two-electron integrals in the form of Cholesky vectors and density-fitted electron integrals. This switch in representation imparts flexibility towards the processing of the two-electron integrals, which is crucial to our restructuring efforts. While the evaluation of the Cholesky vectors and density-fitted integrals is not linear scaling, the overall computation cost of the calculation is lowered by greatly reducing the scaling prefactor. Hence, we were able to treat molecules containing as many as 50 heavy atoms with this accurate correlation wave function technique. Finally, we extended our LMRSDCI implementation from only calculating ground electronic states to be able to calculate valence excited states in large molecules.
机译:正如Pulay和Saebo所倡导的那样,这项工作扩展了Carter组中多引用单双配置交互方法(LMRSDCI)中局部相关的开发和应用。局部相关技术可用于通过利用电子相关性的短距离特性,从而减少电子结构计算的成本,从而根据空间标准而忽略不重要的波动函数。在我们最初的实现中,被占据的轨道通过unit变换进行局部化,而虚拟子空间被非正交的投影原子轨道(PAO)所覆盖。通过将数字筛选技术与局部截断方案相结合,我们能够实现整体线性缩放方法,该方法从其传统的非常昂贵的O(N6)缩放比例降低了,同时保持了化学准确性。随后,我们通过用局部正交虚拟轨道替换PAO以及在CI哈密顿矩阵对角化内重构速率限制步骤,对LMRSDCI实施方案进行了进一步优化。此外,我们采用Cholesky向量和密度拟合电子积分形式的常规两电子积分的替代表示形式。这种表示方式上的切换为处理双电子积分提供了灵活性,这对于我们的重组工作至关重要。虽然Cholesky向量和密度拟合积分的评估不是线性缩放,但通过大大减小缩放比例因子可以降低总体计算成本。因此,通过这种精确的相关波函数技术,我们能够处理包含多达50个重原子的分子。最后,我们从仅计算基态电子状态扩展了LMRSDCI实现,从而能够计算大分子中的价态激发态。

著录项

  • 作者

    Chwee, Tsz Sian.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号