首页> 外文学位 >Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports.
【24h】

Selective, ultrathin membrane skins prepared by deposition of novel polymer films on porous alumina supports.

机译:通过在多孔氧化铝载体上沉积新型聚合物薄膜而制备的选择性超薄膜皮。

获取原文
获取原文并翻译 | 示例

摘要

Membrane-based separations are attractive in industrial processes because of their low energy costs and simple operation. However, low permeabilities often make membrane processes uneconomical. Since flux is inversely proportional to membrane thickness, composite membranes consisting of ultrathin, selective skins on highly permeable supports are required to simultaneously achieve high throughput and high selectivity. However, the synthesis of defect-free skins with thicknesses less than 50 nm is difficult, and thus flux is often limited.; Layer-by-layer deposition of oppositely charged polyelectrolytes on porous supports is an attractive method to synthesize ultrathin ion-separation membranes with high flux and high selectivity. The ion-transport selectivity of multilayer polyelectrolyte membranes (MPMs) is primarily due to Donnan exclusion; therefore increase in fixed charge density should yield high selectivity. However, control over charge density in MPMs is difficult because charges on polycations are electrostatically compensated by charges on polyanions, and the net charge in the bulk of these films is small. To overcome this problem, we introduced a templating method to create ion-exchange sites in the bulk of the membrane. This strategy involves alternating deposition of a Cu2+-poly(acrylic acid) complex and poly(allylamine hydrochloride) on a porous alumina support followed by removal of Cu2+ and deprotonation to yield free -COO ion-exchange sites. Diffusion dialysis studies showed that the Cl/SO42−. Selectivity of Cu2+-templated membranes is 4-fold higher than that of membranes prepared in the absence of Cu2+. Post-deposition cross-linking of these membranes by heat-induced amide bond formation further increased Cl/SO42− selectivity to values as high as 600.; Room-temperature, surface-initiated atom transfer radical polymerization (ATRP) provides another convenient method for formation of ultrathin polymer skins. This process involves attachment of polymerization initiators to a porous alumina support and subsequent polymerization from these initiators. Because ATRP is a controlled polymerization technique, it yields well-defined polymer films with low polydispersity indices (narrow molecular weight distributions). Additionally, this method is attractive because film thickness can be easily controlled by adjusting polymerization time. Gas-permeability data showed that grafted poly(ethylene glycol dimethacrylate) membranes have a CO 2/CH4 selectivity of 20, whereas poly(2-hydroxyethyl methacrylate) (PHEMA) films grown from a surface have negligible selectivity. However, derivatization of PHEMA with pentadecafluorooctanoyl chloride increases the solubility of CO2 in the membrane and results in a CO2/CH4 selectivity of 9.; Although composite PHEMA membranes have no significant gas-transport selectivity, diffusion dialysis studies with PHEMA membranes showed moderate ion-transport selectivities. Cross-linking of PHEMA membranes by reaction with succinyl chloride greatly enhanced anion-transport selectivities while maintaining reasonable flux. The selectivities of these systems demonstrate that alternating polyelectrolyte deposition and surface-initiated ATRP are indeed capable of forming ultrathin, defect-free membrane skins that can potentially be modified for specific separations.
机译:基于膜的分离由于其较低的能源成本和简单的操作而在工业过程中具有吸引力。但是,低渗透率通常会使膜工艺不经济。由于通量与膜厚度成反比,因此需要由高渗透性载体上的超薄选择性皮组成的复合膜,以同时实现高通量和高选择性。然而,厚度小于50nm的无缺陷皮肤的合成是困难的,因此通量通常受到限制。在多孔载体上逐层沉积带相反电荷的聚电解质是一种具有高通量和高选择性的超薄离子分离膜合成方法。多层聚电解质膜(MPM)的离子迁移选择性主要是由于Donnan的排斥。因此,固定电荷密度的增加应产生高选择性。但是,很难控制MPM中的电荷密度,因为聚阳离子上的电荷被聚阴离子上的电荷静电补偿,并且这些薄膜的主体中的净电荷很小。为了克服这个问题,我们引入了一种模板化方法来在膜的主体中创建离子交换位点。该策略涉及在多孔氧化铝载体上交替沉积Cu 2 + -聚丙烯酸和聚烯丙胺盐酸盐,然后去除Cu 2 + 和。去质子化产生自由的-COO -离子交换位。扩散渗析研究表明Cl - / SO 4 2 − 。 Cu 2 + 模板膜的选择性是没有Cu 2 + 的膜的4倍。这些膜通过热诱导酰胺键形成的沉积后交联进一步提高了Cl - / SO 4 2-对以下值的选择性高达600。室温,表面引发的原子转移自由基聚合(ATRP)为形成超薄聚合物表层提供了另一种便捷的方法。该方法包括将聚合引发剂连接到多孔氧化铝载体上,然后由这些引发剂进行聚合。由于ATRP是一种受控的聚合技术,因此可以生产出具有低多分散指数(窄分子量分布)的轮廓分明的聚合物薄膜。另外,该方法是有吸引力的,因为可以通过调节聚合时间容易地控制膜厚度。气体渗透率数据显示,接枝的聚乙二醇二甲基丙烯酸酯膜的CO 2 / CH 4 选择性为20,而聚甲基丙烯酸2-羟乙酯(PHEMA)从表面生长的薄膜具有可忽略的选择性。然而,用五氟十六烷酰氯衍生化PHEMA会增加CO 2 在膜中的溶解度,并导致CO 2 / CH 4 的选择性为9 。;尽管复合PHEMA膜没有明显的气体传输选择性,但使用PHEMA膜进行的渗析研究显示出中等的离子传输选择性。通过与琥珀酰氯反应使PHEMA膜发生交联,大大提高了阴离子传输的选择性,同时保持了合理的通量。这些系统的选择性表明,交替的聚电解质沉积和表面引发的ATRP确实能够形成超薄,无缺陷的膜皮,可以针对特定的分离方法进行改性。

著录项

  • 作者

    Balachandra, Anagi Manjula.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Analytical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号