首页> 外文学位 >Coordinated analysis of sprites with high speed images and remote electromagnetic fields.
【24h】

Coordinated analysis of sprites with high speed images and remote electromagnetic fields.

机译:带有高速图像和远程电磁场的子画面的协同分析。

获取原文
获取原文并翻译 | 示例

摘要

One of the most dramatic discoveries in solar-terrestrial physics in the past two decades is the sprite, a high altitude optical glow produced by a lightning discharge. In this work, we infer the lightning-driven ambient electric fields by combining remote measured electromagnetic fields with numerical simulations. To accomplish this, we first extract the lightning source current from remotely measured magnetic fields with a deconvolution technique. Then we apply this current source to an existing 2-D Finite Difference Time Domain (FDTD) model to compute the electric fields at sprite altitudes. These inferred electric fields make up for the deficiency of lacking in-situ measurements.;A data set collected at two observation sites in 2005 combines simultaneous measurements of sprite optical emissions and sprite-producing lightning radiated electromagnetic fields. Sprite images from a high speed camera and the measured wideband magnetic fields removed the limitations imposed by the small sprite temporal scale and allow us to precisely determine the sprite initiation time and the time delay from its parent lightning discharge. For 83 sprites analyzed, close to 50% of them are delayed for more than 10 ms after the lightning discharges and empirically defined as long-delayed sprites. Compared with short-delayed sprites, which are driven by the lightning return stroke, all these long-delayed sprites are associated with intense continuing current and large total charge moment changes. Besides that, sferic bursts and slow intensifications are frequently detected before those long-delayed sprites. These observations suggest a different initiation mechanism of long-delayed sprites. To reveal that, we inferred the lightning-driven electric fields at the sprite initiation time and altitude. Our results show that although long-delayed sprites are mainly driven by the continuing current instead of the lightning return stroke, the electric fields required to produce those long-delayed sprites are essentially the same as fields to produce short-delayed sprites. Thus the initiation mechanism of long delayed sprite is consistent with the conventional breakdown model. Our results also revealed that the slow (5--20ms) intensifications in continuing current can significantly increase high altitude electric fields and play a major role in initiating delayed sprite. Sferic bursts, which were suggested as a direct cause of long-delayed sprites in previous studies, are linked to slow intensifications but not causal.;Previous studies from remote measured low frequency radio emissions indicate that substantial electric current flows inside the sprite body. This charge motion, with unknown location and amount, is related to the detailed internal microphysics of sprite development that is in turn connected to the impact sprites have on the mesosphere. In our data, the recorded high speed images show the entire development history of sprite streamers. By assuming streamers propagate along the direction of local electric fields, we estimate the amount of electric charge in sprites. Our results show that individual bright core contains significant negative space charge between 0.01 to 0.03 C. Numerical simulations also indicate that this sprite core region is at least partial or perhaps the dominant source of the positive charge in the downward positive polarity streamers. Thus the average amount of charge in each downward streamer is at least 2--4 x 10-3 C. The connection between these charge regions is consistent with previous observations. The reported amount and location of the electric charge provide the initial condition and key data to constrain the existing streamer models.;After initiation, sprite streamers propagate in the inhomogeneous medium from a strong field region to a weak field region. The propagation properties reflect the physics in sprite development. For the first time we measured the downward streamer propagation behaviors over the full sprite altitude extent. We found that downward streamers accelerate to a maximum velocity of 1--3 x 107 m/s and then immediately decelerate at an almost constant rate close to 1010 m/ s2. The deceleration processes dominant downward streamer propagation in both time and distance. Lightning-driven electric fields have been inferred at streamer tip locations during their propagation. We found that most of the deceleration process occurs at a electric field less than 0.1 Ek. The results also show the dependence of sprite termination altitude on the ambient electric field. A minimum ambient electric field about 0.05 Ek is consistently observed for streamers in different sprites or at different locations in a single sprite. These streamer propagation properties as well as their connections to the ambient electric fields can be applied to further constrain the streamer models. (Abstract shortened by UMI.)
机译:过去二十年来,在太阳地面物理学中最引人注目的发现之一是精灵,它是由闪电放电产生的高空光学辉光。在这项工作中,我们通过将远程测得的电磁场与数值模拟相结合来推断闪电驱动的环境电场。为此,我们首先使用反卷积技术从遥测的磁场中提取雷电电流。然后,我们将此电流源应用于现有的二维有限时域(FDTD)模型,以计算子图形高度的电场。这些推断出的电场弥补了缺乏原位测量的不足。2005年在两个观测点收集的数据集结合了对子画面光发射和产生子画面的雷电辐射电磁场的同时测量。来自高速相机的子画面图像和测得的宽带磁场消除了小子画面时间尺度带来的限制,使我们能够精确地确定子画面启动时间和母闪电放电的时间延迟。对于分析的83个精灵,在雷电放电后,其中近50%的精灵会延迟10毫秒以上,并根据经验将其定义为长延迟精灵。与由雷电回程驱动的短时精灵相比,所有这些长时精灵都具有强烈的持续电流和较大的总充电力矩变化。除此之外,在那些长时延的子画面之前,经常会检测到强脉冲和缓慢的增强。这些观察结果提示了长延迟精灵的不同引发机制。为了揭示这一点,我们推断出在精灵启动时间和高度的闪电驱动的电场。我们的结果表明,尽管长时间延迟的精灵主要由持续电流驱动,而不是由雷电回程驱动,但是产生那些长时间延迟的精灵所需的电场与产生短时间的精灵所需的电场基本相同。因此,长延时精灵的启动机制与常规击穿模型是一致的。我们的结果还表明,持续电流中的缓慢增强(5--20ms)可以显着增加高海拔电场,并在引发延迟的精灵中起主要作用。在以前的研究中认为,铁素体爆发是长时延的子画面的直接原因,它与强度的增强有关,而不是因果关系。先前对远程测量的低频无线电发射的研究表明,大量电流在子画面体内流动。具有未知位置和数量的这种电荷运动与子图形发展的详细内部微观物理学有关,而该内部微观物理学又与子图形对中层球的影响有关。在我们的数据中,记录的高速图像显示了精灵流光的整个发展历史。通过假设拖缆沿着局部电场的方向传播,我们估计了子画面中的电荷量。我们的结果表明,单个亮芯在0.01到0.03 C之间包含显着的负空间电荷。数值模拟还表明,该子图形芯区域至少是部分正弦流中的正电荷,或者可能是正电荷的主要来源。因此,每个向下拖缆中的平均电荷量至少为2--4 x 10-3C。这些电荷区域之间的连接与先前的观察一致。所报告的电荷量和位置提供了约束现有拖缆模型的初始条件和关键数据。启动后,子画面拖缆在非均匀介质中从强场区域传播到弱场区域。传播特性反映了精灵开发中的物理性质。我们首次测量了整个精灵高度范围内的向下拖缆传播行为。我们发现向下的拖缆加速到最大速度为1--3 x 107 m / s,然后立即以接近1010 m / s2的几乎恒定速率减速。减速过程主要是向下拖缆在时间和距离上的传播。雷电驱动的电场在其传播过程中被推断出在拖缆尖端位置。我们发现,大多数减速过程都在小于0.1 Ek的电场下发生。结果还显示了精灵终止高度与环境电场的关系。对于在不同子图形中或单个子图形中不同位置的拖缆,始终观察到约0.05 Ek的最小环境电场。这些拖缆的传播特性以及它们与周围电场的联系可用于进一步约束拖缆模型。 (摘要由UMI缩短。)

著录项

  • 作者

    Li, Jingbo.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号