首页> 外文学位 >Configurational diffusion of small gas molecules in nanostructured materials: A computational and experimental study.
【24h】

Configurational diffusion of small gas molecules in nanostructured materials: A computational and experimental study.

机译:小气体分子在纳米结构材料中的构型扩散:计算和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Nanostructured materials, such as nanoporous carbons (NPC) and nanoconfined polymers, are of great interest owing to the superior gas separation properties exhibited by them. The motion of gas molecules through such materials is described as configurational diffusion where the pore size of the material is commensurate with the size of the diffusing species. A theoretical description of transport of gas molecules through nanostructured materials is a daunting task due to the complex, tortuous pathways and non-uniform force fields inside the material. The goal of this dissertation is to provide a fundamental understanding of the mechanism of gas diffusion through such materials primarily using molecular simulations.;NPCs are important materials in separation industry and are used extensively for gas separation using pressure swing adsorption. Membranes fabricated from NPCs have been observed to exhibit high selectivity for several gases such as O2/N2 (30:1), He/N2 (178:1) and H 2/N2 (331:1). However, the molecular mechanism responsible for such high selectivities is not fully understood. There is no general consensus on whether entropic (size) effects or enthalpic (energy) effects are responsible for separation of gases in NPCs. We intend to develop a hierarchical molecular model for gas transport in NPCs to resolve this controversy.;In order to study the diffusion of gases through NPCs using simulation a realistic representation of their structure is required. We have developed a novel Monte Carlo (MC) algorithm to generate molecular models of NPCs using Gaussian polymer chains as the starting structure. The NPC models are characterized using properties such as pair distribution function, fraction of non-hexagonal rings and bond anisotropy map. The structural properties of NPC models generated using the MC algorithm are in good agreement with those observed experimentally for real NPCs. The NPC models are composed of curved and randomly oriented graphitic sheets.;Grand Canonical Monte Carlo (GCMC) simulations are carried out using two potentials, namely the Steele potential (developed for graphite) and an ab-initio potential (developed for C168 schwarzite having curved carbon surfaces) to represent the gas-carbon interactions. N2 and O2 sorption in our model NPCs show good agreement with experimental data in terms of the adsorption isotherm and the isosteric heat of adsorption. The adsorptive selectivity of oxygen over nitrogen is higher for Steele potential and increases with pressure/loading.;Molecular dynamics (MD) simulations of small molecule (N2 and O2) diffusion through the atomistic NPC models show that the self-diffusion coefficients of N2 and O2 are similar (i.e., the kinetic selectivity is close to unity). The overall oxygen-to-nitrogen selectivity (product of adsorptive and kinetic selectivities) is much higher when using Steele potential (compared to the ab-initio potential). Thus, we conclude that the Steele potential is more promising for simulating N2 and O2 transport in NPCs. The current MD simulations have been carried out at infinite dilution. The next logical step would be to implement the simulations at finite concentrations and under a pressure gradient in order to more accurately mimic the actual separation conditions.;Configurational diffusion in glassy, amorphous polymers is dictated by the structure and dynamics of the polymer since the penetrant has to travel through a tortuous pathway afforded by the free volume within the polymer while being in close contact with the polymer matrix. Experimental studies reported in literature have shown that altering the local structure of the polymer by confining it to a pore or by adding nanoparticles to it results in improved separation (permeability and selectivity) properties. To understand this phenomenon, the transport of helium and methane in atactic polypropylene (aPP) confined to a model slit-shaped pore is studied using MD simulation. "Mirror" boundary conditions are used at the pore wall to make is impermeable to the polymer and penetrant molecules while regular periodic boundary conditions are used in the other directions. Confinement is observed to modify the polymer density and backbone structure in the region near the pore wall. A comparison with transport through bulk aPP and through aPP confined to a rectangular pore showed that helium permeability increases with increasing degree of confinement while methane permeability remains relatively unchanged. Helium perm-selectivity over methane showed considerable enhancement on increasing the degree of confinement. The results from the simulations provide a logical explanation of the experimentally observed enhancement in separation properties of polymers upon nano-confinement.
机译:纳米结构材料,例如纳米多孔碳(NPC)和纳米受限聚合物,由于它们具有出色的气体分离性能而备受关注。气体分子通过这类材料的运动被描述为构型扩散,其中材料的孔径与扩散物质的尺寸相对应。由于材料内部复杂,曲折的路径和不均匀的力场,对通过纳米结构材料传输气体分子的理论描述是一项艰巨的任务。本文的目的是主要通过分子模拟来提供对气体通过这种材料扩散的机理的基本理解。NPC是分离工业中的重要材料,并广泛用于变压吸附进行气体分离。已观察到由NPC制造的膜对多种气体(例如O2 / N2(30:1),He / N2(178:1)和H 2 / N2(331:1))具有高选择性。但是,尚未完全了解导致如此高选择性的分子机理。关于熵(大小)效应还是焓(能量)效应是造成NPC中气体分离的原因,目前尚无共识。我们打算为NPC中的气体传输建立一个层次化的分子模型,以解决这一争议。为了通过模拟研究NPC中气体在NPC中的扩散,需要对其结构进行现实的表征。我们开发了一种新颖的蒙特卡洛(MC)算法,以高斯聚合物链为起始结构来生成NPC的分子模型。 NPC模型使用诸如对分布函数,非六边形环的分数和键各向异性图等特性来表征。使用MC算法生成的NPC模型的结构特性与实际NPC的实验观察到的特性非常吻合。 NPC模型由弯曲的和随机取向的石墨片组成。大正则蒙特卡罗(GCMC)模拟是使用两个电势进行的,即斯蒂尔电势(为石墨开发)和从头定势(为C168硅酸锌开发,具有弯曲的碳表面)代表气体-碳相互作用。在我们的模型NPC中,N2和O2的吸附在吸附等温线和吸附等规热方面与实验数据显示出良好的一致性。斯蒂尔电位上氧对氮的吸附选择性更高,并随压力/负载而增加。;通过原子NPC模型对小分子(N2和O2)扩散的分子动力学(MD)模拟表明,N2和N2的自扩散系数O 2相似(即动力学选择性接近于一)。当使用斯蒂尔电势(与从头算电势相比)时,总的氧-氮选择性(吸附和动力学选择性的乘积)要高得多。因此,我们得出结论,对于模拟NPC中的N2和O2传输,斯蒂尔势能更具前景。当前的MD模拟是在无限稀释下进行的。下一步的逻辑步骤是在有限的浓度和压力梯度下进行模拟,以便更准确地模拟实际的分离条件。玻璃态无定形聚合物中的构型扩散取决于渗透剂的结构和动力学当与聚合物基质紧密接触时,聚合物必须经历由聚合物内自由体积提供的曲折路径。文献报道的实验研究表明,通过将聚合物限制在孔中或向其中添加纳米颗粒来改变聚合物的局部结构,可以改善分离性能(渗透性和选择性)。为了理解该现象,使用MD模拟研究了局限在模型狭缝形孔中的无规聚丙烯(aPP)中氦和甲烷的传输。在孔壁处使用“镜面”边界条件以使聚合物和渗透剂分子不可渗透,而在其他方向上使用规则的周期性边界条件。观察到限制改变了孔壁附近区域的聚合物密度和主链结构。与通过本体aPP和通过封闭在一个矩形孔中的aPP的传输进行的比较表明,氦气的渗透率随约束程度的增加而增加,而甲烷的渗透率保持相对不变。氦气对甲烷的选择性提高了封闭度,从而大大提高了选择性。来自模拟的结果提供了在纳米约束下实验观察到的聚合物分离性能增强的逻辑解释。

著录项

  • 作者

    Kumar, Amit.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 286 p.
  • 总页数 286
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号