首页> 外文学位 >Analysis of cell-cell and cell-matrix interactions in three dimensional biomaterial coculture systems.
【24h】

Analysis of cell-cell and cell-matrix interactions in three dimensional biomaterial coculture systems.

机译:三维生物材料共培养系统中细胞-细胞和细胞-基质相互作用的分析。

获取原文
获取原文并翻译 | 示例

摘要

The in vivo microenvironment presents a complex milieu of multifaced cues to the cells which reside in it. These cues, based upon cell-cell interactions, cell-matrix interactions, and soluble factors, are controlled both spatially and temporally. Regulation of these signaling cues is vital for tissue development and homeostasis. As a result, when this signaling is disrupted, it can lead to developmental abnormalities or disease states, such as arthritis and tumor development. This work focuses on understanding the influence of the extracellular matrix on dictating cell and tissue interactions in normal cartilage, osteoarthritis, and mammary gland development. Current understanding of these properties is limited by the use of two dimensional culture systems. This work seeks to utilize three dimensional biomaterial culture systems to provide a more sophisticated model of the in vivo microenvironment while maintaing a precise control of the matrix properties. This is accomplished through application of poly (ethylene glycol) based systems. Results demonstrate that MSC stimulation of cartilage tissue formation is dependent on the differentiation state of the MSCs. Furthermore, in osteoarthritic chondrcytes, spatial orientation between cell populations is an important factor in the MSC stimulatory capacity. Finally, matrix rigidity and pore size was found to be permissive rather than instructive for mammary gland organoid branching with tumor organoids retaining the capacity to branch in stiffer matrixes as compared with normal tissue.
机译:体内微环境向驻留在其中的细胞呈现出复杂的多面线索。这些提示基于细胞-细胞相互作用,细胞-基质相互作用和可溶性因子,在空间和时间上都受到控制。这些信号提示的调节对于组织发育和体内平衡至关重要。结果,当该信号传导被破坏时,它可能导致发育异常或疾病状态,例如关节炎和肿瘤发展。这项工作侧重于了解细胞外基质对决定正常软骨,骨关节炎和乳腺发育中细胞和组织相互作用的影响。目前对这些特性的理解受到二维培养系统的限制。这项工作试图利用三维生物材料培养系统,以提供更复杂的体内微环境模型,同时保持对基质特性的精确控制。这是通过应用基于聚乙二醇的系统来实现的。结果表明,MSC对软骨组织形成的刺激取决于MSC的分化状态。此外,在骨关节炎软骨细胞中,细胞群之间的空间方向是MSC刺激能力的重要因素。最后,发现乳腺类器官分支的基质刚性和孔径是允许的,而不是指导性的,与正常组织相比,肿瘤类器官保留了在较硬的基质中分支的能力。

著录项

  • 作者

    Rothenberg, Ashley R.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Biology Cell.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号