首页> 外文学位 >Dense suspension rheology and flow phenomena.
【24h】

Dense suspension rheology and flow phenomena.

机译:浓稠的悬浮流变性和流动现象。

获取原文
获取原文并翻译 | 示例

摘要

Rheology of concentrated flows of colloidal and non-colloidal suspensions is probed using simulation and experimental techniques. When subjected to shear, a concentrated suspension exhibits a rich variety of behaviors. The striking behaviors vary from shear induced ordering to shear thickening and hydrodynamic instabilities depending on the particle concentration and flow conditions. A range of these behaviors is studied in terms of microscopic and macroscopic response of the system.;The computational studies use Accelerated Stokesian Dynamics (ASD) simulation technique to investigate colloidal suspension flow at low particle Reynolds number. The first study explores shear-induced ordering in colloidal suspensions. The simulations are performed for particle volume fractions 0.47 ≤ &phis; ≤ 0.57 at Peclet numbers of 1 ≤ Pe = 6pieta g&d2; a3/kT ≤ 10 4 where eta is the suspending fluid viscosity, g&d2; is the imposed shear rate, a is the sphere radius and kT is the thermal energy. At Pe ≥ 10, when particle volume fraction is above &phis; ≈ 0.50, the suspensions undergo ordering over extended periods at the onset of flow, with remarkable reduction in the shear viscosity and self-diffusivity. The thixotropic response is a result of microstructural ordering, which is characterized by the real space pair distribution function and its Fourier transform, the static structure factor; both show that the particles tend to flow in chains with hexagonal packing in the plane normal to the flow. An order parameter is formulated to quantitatively describe the strength of this hexagonal packing.;The second computational study compares the microstructural anisotropy observed in sheared suspensions simulated by the ASD technique (&phis; 0.50) to that observed in an experimental study of pressure-driven flow of Brownian suspensions through a micro-channel. In the experiments, three-dimensional particle locations are obtained via confocal microscopy. The features of the pair distribution function obtained experimentally show excellent qualitative match with that obtained from the simulations.;The third simulation study probes shear thickening (or jamming) in Brownian suspensions based on a 'motion correlation' approach. The correlations for the velocity-gradient (y) direction velocities of the particle pairs are studied for ASD simulated suspensions with 0.05 ≤ &phis; ≤ 0.47 at various Peclet numbers. The pair motion correlations show strong dependence on &phis; and Pe, and this novel approach captures the long-range structures at microscopic level which could be associated with the shear thickening phenomenon.;The experimental work investigates gravity-driven flow of concentrated suspensions (&phis; > 0.50) of non-Brownian spherical particles through a channel contraction at low Reynolds number. The abrupt change in the flow area at the contraction forms distinct shear-rate regions having different fluid pressures, which are related to the concept of particle pressure. A model involving particle pressure variation coupled to a Darcy-like behavior for the fluid captures the phenomenon of 'self-filtration', in which the effluent material has lower solid fraction than the input suspension.;In the above experimental set-up, when an external load is added on the suspension, the flow transforms from the smooth motion to a periodically alternating fast and slow motion for &phis; ≈ &phis;c ≥ 0.55. This remarkable alternating motion is suggestive of conversion from a liquid suspension into a thickened 'solid-like' system. The periodic flow behavior is found to be robust, occurring for a range of imposed driving pressure level, particle size and viscosity of solvent. The 'self-filtration' is found to be retained in the periodic flow conditions. The coupling of periodic flow behavior to the system's pressure response is investigated.
机译:使用模拟和实验技术探究了胶体和非胶体悬浮液的浓流的流变性。受到剪切作用时,浓缩的悬浮液会表现出多种变化。取决于颗粒浓度和流动条件,打击行为从剪切诱导的排序到剪切增稠和流体动力不稳定性,都不同。从系统的微观和宏观响应方面研究了这些行为的范围。计算研究使用加速斯托克斯动力学(ASD)模拟技术研究低粒子雷诺数下的胶体悬浮液流动。第一项研究探讨了胶体悬浮液中剪切诱导的有序性。对粒子体积分数为0.47≤&phis;的模拟进行。 Peclet数为1≤Pe = 6pieta g&d2时,≤0.57; a3 / kT≤10 4其中,eta是悬浮液的粘度,g&d2;是施加的剪切速率,a是球体半径,kT是热能。当Pe≥10时,当颗粒体积分数大于φ时; &ap; 0.50时,悬浮液在流动开始时会经历较长时间的有序化,剪切粘度和自扩散性显着降低。触变响应是微观结构有序的结果,其特征在于实空间对分布函数及其傅立叶变换(静态结构因子)。两者均表明颗粒倾向于在垂直于流动的平面中以六边形堆积成链状流动。制定了一个阶次参数来定量描述这种六边形填料的强度。第二次计算研究将ASD技术模拟的剪切悬浮液中的微观结构各向异性(φ<0.50)与压力驱动的实验研究中的各向异性进行了比较。布朗悬浮液通过微通道的流动。在实验中,通过共聚焦显微镜获得三维粒子位置。通过实验获得的对分布函数的特征与从模拟中获得的对具有良好的定性匹配。;第三次模拟研究基于“运动相关”方法探究了布朗悬架的剪切增稠(或阻塞)现象。对于0.05≤φ的ASD模拟悬浮液,研究了颗粒对的速度梯度(y)方向速度的相关性。各种Peclet值≤0.47。一对运动相关性显示出对φ的强烈依赖性。和Pe,这种新颖的方法在微观水平上捕获了可能与剪切增厚现象有关的远距离结构。;实验工作研究了非布朗球形颗粒的浓缩悬浮液(φ> 0.50)的重力驱动流通过低雷诺数的通道收缩。收缩时流动面积的突然变化形成具有不同流体压力的不同剪切率区域,这与颗粒压力的概念有关。涉及颗粒压力变化并与流体的达西样行为耦合的模型捕获了“自滤”现象,其中流出物的固体分数低于输入悬浮液。在上述实验设置中,当在悬架上增加了外部负载,对于φ,流体从平滑运动转换为周期性交替的快慢运动。 &ap; ≥0.55。这种明显的交替运动暗示了从液体悬浮液到增稠的“固体状”系统的转化。发现周期性流动行为是鲁棒的,发生在施加的驱动压力水平,颗粒大小和溶剂粘度的范围内。发现“自过滤”在周期性流动条件下得以保留。研究了周期性流动行为与系统压力响应的耦合。

著录项

  • 作者

    Kulkarni, Sandeep Dileep.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号