首页> 外文学位 >Development of multiscale thermal model for in-service performance of thermal barrier coatings.
【24h】

Development of multiscale thermal model for in-service performance of thermal barrier coatings.

机译:为隔热涂层的使用性能开发多尺度热模型。

获取原文
获取原文并翻译 | 示例

摘要

In the turbine industry, there is a growing tendency to use higher turbine inlet temperatures to improve the efficiency of the turbine engine. Consequently, the heat load on the turbine component increase, especially in the high pressure side of the turbine. The heat load is due to the exposure of the turbine parts to the enormous heat flux emanating from the combustion gases. In order to improve the life expectancy of the turbine blades and increase its efficiency as well, more effective cooling methods, in conjunction with the use of the thermal barrier coatings (TBCs), must be employed to ensure the homogenization of substrate temperature distribution. This cooling requirement applies to the turbines for all applications-air, land and sea. At high temperatures, both conduction and radiation are important in determining the temperature distribution in the metal substrates.;Design optimization of the gas turbine blade coatings at high temperatures is an important area of research. This involves prediction of temperature distribution on the blades with thermal coatings as part of the optimization process. This study presents a more realistic approach that can be used to evaluate in-service performance of thin layers of thermal barrier coatings typically found in hot sections of land based and air based turbine engines. Most thermal analysis approaches in this area of the research are based on continuum Fourier based models that assume infinite speed of heat wave propagation in materials. Due to this assumption, Fourier heat conduction equation does not give accurate results for thin film structures exposed to very high temperatures. Therefore, researchers are interested in different approaches to calculate the temperature gradient in TBC. A two part study is undertaken in this thesis work that involves a 2-dimensional (2-D) continuum modeling and a 1-dimensional (1-D) microscale modeling to investigate the thermal gradients in surface of a gas turbine blade coated with thermal barrier coatings.;In the 2-D study, the steady state heat diffusion equation is solved to determine the temperature distribution in the turbine blade using commercial computational fluid dynamics and heat transfer software (Fluent). The effects of incident radiation in the surroundings of the TBC on the metal substrate are considered. It is found that at about 1573 K free stream combustion gas temperature, the use of TBCs with radiation increases the substrate temperatures by about 15K. The application of TBCs acts like a heat suppressor, dropping the metal temperature approximately 50K. This temperature drop has the potential of increasing the life of hot gas path components by two fold. It is therefore imperative to include radiation in thermal modeling at high temperature, since neglecting it will surely underpredict the metal temperature distribution. The effect of the total heat flux through the TBC on the maximum temperature drop obtainable from the TBC was also studied. As will be expected increase in heat flux resulted in an increased temperature drop across the TBC until at about a temperature of 1473K when the temperature drop across the TBC dipped. This dip in temperature drop is attributed to the sintering of the TBC at such high temperature. In the 1-D study, one dimensional multiscale heat transfer model is developed by using Fortran 90. The hyperbolic heat conduction equation is used as the governing equation for the TBC-substrate computational domain to determine the temperature distribution in the TBC-substrate system. The results are compared with the parabolic heat conduction in the TBC-substrate system. It is found that for microscale energy transport in thin films, the hyperbolic heat conduction equation predicts more realistic temperature distribution than the parabolic heat conduction equation.;The modeling approach developed in this study when coupled with corresponding equations for stress analysis can be used to predict the thermal stress and failure life during in-service use of TBCs.
机译:在涡轮机行业中,越来越多的趋势是使用更高的涡轮机入口温度来提高涡轮发动机的效率。因此,涡轮机部件上的热负荷增加,特别是在涡轮机的高压侧。热负荷归因于涡轮机部件暴露于燃烧气体产生的巨大热通量。为了提高涡轮机叶片的预期寿命并同时提高其效率,必须采用更有效的冷却方法以及隔热涂层(TBC)的使用,以确保基板温度分布的均匀性。该冷却要求适用于所有应用的涡轮机,包括空气,陆地和海洋。在高温下,传导和辐射都对确定金属基材中的温度分布很重要。高温下燃气轮机叶片涂层的设计优化是重要的研究领域。作为优化过程的一部分,这涉及对带有热涂层的叶片温度分布的预测。这项研究提出了一种更现实的方法,可用于评估通常在陆基和空基涡轮发动机的高温区域中发现的热障涂层薄层的使用性能。在该研究领域中,大多数热分析方法都是基于连续傅立叶模型,该模型假设材料中热波传播的速度是无限的。由于该假设,对于暴露于非常高的温度的薄膜结构,傅里叶热传导方程式无法给出准确的结果。因此,研究人员对计算TBC中温度梯度的不同方法感兴趣。本论文分为两部分进行研究,涉及二维(2-D)连续介质建模和一维(1-D)微观建模,以研究涂有热的燃气轮机叶片表面的热梯度。在二维研究中,使用商业计算流体动力学和传热软件(Fluent)求解稳态热扩散方程,以确定涡轮机叶片中的温度分布。考虑在金属基板上TBC的周围环境中的入射辐射的影响。已发现在约1573 K的自由流燃烧气体温度下,带辐射的TBC的使用会使底物温度增加约15K。 TBC的应用就像一个热抑制器,将金属温度降低了约50K。该温度下降具有使热气路径部件的寿命增加两倍的潜力。因此,必须将辐射包括在高温下的热模型中,因为忽略它肯定会低估金属温度分布。还研究了通过TBC的总热通量对可从TBC获得的最大温度下降的影响。可以预料,热通量的增加会导致整个TBC的温度下降增加,直到整个TBC的温度下降减小到大约1473K。温度下降的这种下降归因于在这样的高温下TBC的烧结。在一维研究中,使用Fortran 90开发了一维多尺度传热模型。双曲线热传导方程用作TBC基板计算域的控制方程,以确定TBC基板系统中的温度分布。将结果与TBC-基板系统中的抛物线热传导进行比较。发现对于薄膜中的微尺度能量传输,双曲型热传导方程预测的温度分布比抛物线型热传导方程更实际。本研究中开发的建模方法与相应的应力分析方程相结合可用于预测在使用TBC时的热应力和失效寿命。

著录项

  • 作者

    Beyazoglu, Ebubekir.;

  • 作者单位

    Southern University and Agricultural and Mechanical College.;

  • 授予单位 Southern University and Agricultural and Mechanical College.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2010
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号