首页> 外文学位 >Capillary dynamics of drops and bubbles: Splashing, wetting, electrocoalescence, inverse coarsening, and thin films.
【24h】

Capillary dynamics of drops and bubbles: Splashing, wetting, electrocoalescence, inverse coarsening, and thin films.

机译:液滴和气泡的毛细管动力学:飞溅,湿润,电聚光,逆粗化和薄膜。

获取原文
获取原文并翻译 | 示例

摘要

Small drops and the thin-films of bubbles are similar in that the surface to volume ratio is large. Consequently, capillary forces, which result from changes in the surface energy, tend to dominate the drop and bubble dynamics. For example, capillarity is responsible for breaking up a liquid jet from a faucet in a sink into a stream of individual droplets, and for coalescing these droplets into a puddle at the bottom of the sink.;This dissertation identifies four situations in which a drop or a bubble exhibits unusual and perhaps counter-intuitive dynamics. The first example (Chapter 2) occurs when a drop impacts either an angled or moving dry, solid surface. Existing physical models attempt to predict the resulting dynamics, spreading or splashing, based on a variety of parameters. Yet it is unclear how these models would extend to include tangential velocity. Our high-speed experiments highlight a distinct third regime in which a fraction of the drop spreads while the other part splashes. The second example (Chapter 3) occurs when a drop contacts a wettable surface with a finite contact angle. Our high-speed experiments challenge the existing models by both showing that the spreading is inertially dominated and that the distance spread follows a power-law scaling in time where the exponent depends on the equilibrium contact angle. The third example (Chapter 4) occurs when two drops are drawn together in an electric field. When the voltage between the drops is low, the drops contact and coalesce. However, when the voltage is sufficiently high, the drops contact and then recoil. The fourth example (Chapter 5) occurs when a bubble on a liquid or solid surface ruptures. Foam coarsening theory would predict that the bubble vanishes when it pops, yet our experiments show that a ring of smaller bubbles is created from the retracting film. This inverse coarsening phenomena is a source of aerosols, and therefore may have implications for health and climate. This dissertation sets out to describe each of these four phenomena and develop plausible physical mechanisms and includes a novel computational approach (Chapter 6) to model retracting thin films.
机译:小滴和气泡薄膜的相似之处在于表面积与体积之比较大。因此,由表面能的变化引起的毛细作用力趋于主导液滴和气泡的动力学。例如,毛细作用负责将水槽中的水龙头中的液体射流分解成单个小滴流,并把这些小滴聚结到水槽底部的水坑中。或气泡显示出异常的动态,甚至可能违反直觉。第一个示例(第2章)发生在水滴撞击成角度的或移动的干燥固体表面时。现有的物理模型试图根据各种参数来预测所产生的动力学,扩散或飞溅。尚不清楚这些模型将如何扩展以包括切向速度。我们的高速实验着重介绍了一种独特的第三种方式,其中一部分液滴扩散而另一部分飞溅。第二个示例(第3章)发生在液滴以有限的接触角接触可湿性表面时。我们的高速实验对现有模型提出了挑战,它们都表明扩展是惯性主导的,并且距离扩展遵循时间的幂律定标,其中指数取决于平衡接触角。第三个示例(第4章)是在电场中将两个墨滴吸引在一起时发生的。当墨滴之间的电压低时,墨滴接触并聚结。但是,当电压足够高时,液滴会接触然后反冲。第四个示例(第5章)发生在液体或固体表面上的气泡破裂时。泡沫粗化理论可以预测气泡破裂后会消失,但我们的实验表明,收缩薄膜会形成一圈较小的气泡。这种逆向粗化现象是气溶胶的来源,因此可能对健康和气候产生影响。本论文着手描述这四种现象中的每一种,并发展出合理的物理机制,并包括一种新颖的计算方法(第6章)来模拟收缩薄膜。

著录项

  • 作者

    Bird, James Chandler.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Applied Mechanics.;Physics Fluid and Plasma.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号