首页> 外文学位 >Geochemistry and geochronology of Alleghanian and 'atypical' Alleghanian granites from south-central Appalachians: Implications for magma evolution and Late Paleozoic terrane accretionary history in the southern Appalachians.
【24h】

Geochemistry and geochronology of Alleghanian and 'atypical' Alleghanian granites from south-central Appalachians: Implications for magma evolution and Late Paleozoic terrane accretionary history in the southern Appalachians.

机译:来自阿巴拉契亚中南部的Alleghanian和“非典型” Alleghanian花岗岩的地球化学和地球年代学:对南部阿巴拉契亚岩浆演化和晚古生代地块增生历史的影响。

获取原文
获取原文并翻译 | 示例

摘要

One of the most important events during the Alleghanian Orogeny in the south-central Appalachians was the emplacement of granites of Late Mississippian-Early Permian age throughout the central and southern Appalachians. These granites represent a very significant volume of magma and hence are ideal rocks for investigating syn-crystallization magma evolution. The mineral apatite can potentially retain finer sub-mineral scale petrogenetic details related to syn-crystallization magma evolution in the form of chemical and isotopic zonations. Hence we selected apatite from a series of Alleghanian plutons to document the evolution of granitic magma. Using a series of thermal annealing and selective chemical dissolution techniques, we measured the isotopic composition ( 87Sr/86Sr and 143Nd/144Nd) of apatite rim and core separately to document the sub-mineral scale differences in the composition. We found that while apatite from some of the granites yielded an isotopically juvenile core (low 87Sr/86Sr and high 143Nd/144Nd) against an evolved rim (high 87Sr/86Sr and low 143Nd/ 144Nd), apatite from other granites yielded exactly the opposite rim-core relation, i.e., evolved core and juvenile rim. These sharp isotopic zonations can only be explained by sharp changes in the magma composition during crystallization.;The Alleghanian granites also have the potential to be used as geochemical probes of the unexposed portions of the lithotectonic units that they intrude. The low negative initial epsilonNd values (-3) of some of the Alleghanian granites suggest the role of isotopically evolved Laurentian crust as a magma source during the Alleghanian magmatism. We tested this hypothesis by modeling the petrogeneses of a series of Alleghanian granitic rocks from Carolina Terrane in terms of whole rock rare earth element (REE) composition, using representative crustal rocks of Carolina Terrane and that of the exposed Grenvillian crust in the southern Appalachians as source rocks. The model results when compared with measured REE patterns of Alleghanian granites, suggested the minor role of Laurentian crust as magma source (∼20%). Independently we also obtained direct evidence of the contribution of Laurentian crust as magma source, in the form of zircon xenocrysts of Grenvillian age (∼1346 Ma and ∼1107 Ma) from selected Alleghanian granites.;We also used the chemical and isotopic composition of the Alleghanian granites to learn about the accretionary history of the Carolina Terrane with the Laurentian margin. On the basis of 147Sm/144Nd ratios we have classified these plutons into the 'atypical' Alleghanian plutons (>0.12) and the typical Alleghanian plutons (0.12). The 'atypical' plutons have a lower Zr/Hf ratio (∼20 to 35), lower bulk REE (84.69--237.33 ppm) and lower CaO wt %, when compared to the typical Alleghanian plutons (SigmaREE = 81.22 to 534.27; Zr/Hf ∼35 to 40) that indicates the formation of these 'atypical' plutons from a fractionated magma. Furthermore, the more felsic 'atypical' plutons have initial epsilon Nd values that suggest that they were formed by anatexis of the Carolina Terrane, while the epsilonNd values of the typical plutons require evolved Laurentian crust as an additional magma source along with the host terrane. These petrogenetic differences between the atypical' and typical Alleghanian granites suggests that the 'atypical' Alleghanian plutons were formed from melt derived by partial melting of Carolina Terrane crust prior to the accretion of Carolina Terrane to the Laurentian margin. Melting during or post accretion may have involved components of native Laurentian crust in addition to terrane curst.
机译:阿巴拉契亚中南部的Alleghanian造山运动中最重要的事件之一是在整个阿巴拉契亚中部和南部分布了密西西比晚期至二叠纪晚期的花岗岩。这些花岗岩代表了非常大量的岩浆,因此是研究同晶岩浆演化的理想岩石。磷灰石矿物可能以化学和同位素分带的形式保留与同结晶岩浆演化有关的更细的亚矿物级别的成岩细节。因此,我们从一系列的Alleghanian岩体中选择了磷灰石,以记录花岗岩岩浆的演化。使用一系列的热退火和选择性化学溶解技术,我们分别测量了磷灰石轮辋和岩心的同位素组成(87Sr / 86Sr和143Nd / 144Nd),以记录组成下的次矿物级差异。我们发现,虽然某些花岗岩中的磷灰石相对于演化的轮缘(高87Sr / 86Sr且低143Nd / 144Nd)产生了同位素少年核(低87Sr / 86Sr和高143Nd / 144Nd),但其他花岗岩的磷灰石却产生了相反的方向边缘-核心关系,即进化的核心和少年边缘。这些尖锐的同位素分带只能用结晶过程中岩浆成分的急剧变化来解释。Alleghanian花岗岩也有可能被用作侵入的岩相单元未暴露部分的地球化学探针。一些Alleghanian花岗岩的负初始负epsilonNd值低(<-3),表明在Alleghanian岩浆作用期间同位素演化的Laurentian地壳作为岩浆源的作用。我们使用卡罗来纳州地形的代表性地壳岩石和阿巴拉契亚南部南部裸露的格伦维利地壳的地壳岩石,对卡罗来纳州Terrane的一系列Alleghanian花岗岩岩石的成岩进行了全岩石稀土元素(REE)组成的建模,从而检验了这一假设。源岩。与测得的Alleghanian花岗岩的REE模式相比,模型结果表明Laurentian地壳作为岩浆源的作用较小(约20%)。独立地,我们还从选定的Alleghanian花岗岩中获得了格伦维利年龄(〜1346 Ma和〜1107 Ma)的锆石异晶锆石形式的劳伦底壳作为岩浆源的直接证据;我们还使用了该岩石的化学和同位素组成。 Alleghanian花岗岩,以了解Laurentian边缘的Carolina Terrane的增生历史。根据147Sm / 144Nd的比率,我们将这些胶体分为“非典型”的Alleghanian胶体(> 0.12)和典型的Alleghanian胶体(<0.12)。与典型的Alleghanian胶子相比(SigmaREE = 81.22到534.27; Zr / Hf〜35至40),表明这些“非典型”云母是由分离的岩浆形成的。此外,较稀疏​​的“非典型”云母具有初始的εNd值,表明它们是由卡罗来纳州地层的无脊椎动物形成的,而典型云母的εnd值需要演化的Laurentian地壳以及宿主岩浆作为额外的岩浆源。非典型的和典型的Alleghanian花岗岩之间的这些成因差异表明,“非典型” Alleghanian岩体是由卡罗来纳州Terrane地壳增生到Laurentian边缘之前,部分熔化卡罗来纳州Terrane地壳而形成的。在增生过程中或增生后的融化可能还涉及土生的Laurentian地壳的成分,以及地壳的凝结。

著录项

  • 作者

    Dasgupta, Tathagata.;

  • 作者单位

    Syracuse University.;

  • 授予单位 Syracuse University.;
  • 学科 Petrology.;Geochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 332 p.
  • 总页数 332
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:34

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号