首页> 外文学位 >Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits.
【24h】

Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits.

机译:在非晶衬底和用于3D集成电路的高性能亚100 nm薄膜晶体管上的纳米图形引导的单晶硅生长。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits.; I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion.; In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied.; To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of T&barbelow;hin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on/off current ratio, device-to-device uniformity etc. Two-dimensional device simulations show that PaTH TFTs are comparable to silicon-on-insulator (SOI) devices, making it a promising candidate for the fabrication of future high performance, low-power 3D integrated circuits.; Finally, an ultrafast nanolithography technique, laser-assisted direct imprint (LADI) is introduced. LADI shows the ability of patterning nanostructures directly in silicon in nanoseconds with sub-10 nm resolution. The process has potential applications in multiple disciplines, and could be extended to other materials and processes.
机译:本文探讨了如何将纳米图案用于控制低温下非晶衬底上单晶硅的生长,并将其应用于平板液晶显示器和3维(3D)集成电路上。我首先介绍了在热氧化硅晶片上对非晶硅(a-Si)纳米结构进行准分子激光退火,以控制单晶硅岛的形成。由于基板增强的边缘加热,在图案中心观察到优先成核。通过超横向生长(SLG)以50 nm x 100 nm的矩形图案获得单晶硅。窄线(例如20 nm宽)可以在大型图形结晶期间用作人工异质形核位点,这可能导致以可控方式形成单晶硅岛。除了准分子激光退火外,还介绍了 NanoPA 沉积和镍诱导的a-Si线的横向C&barstalrystalization(NanoPAC)。单晶硅是通过NanoPAC实现的。 a-Si的线宽显着影响结晶的硅线的晶粒结构。统计数据表明,对于宽度在50 nm至200 nm之间的所有线,都形成了单晶硅。使用原位透射电子显微镜(TEM),可以发现图案内部镍诱导的a-Si横向结晶(Ni-ILC)。光刻限制的单晶(LISS)被提出来解释单晶的形成。还研究了晶粒内线和二维缺陷。为了测试NanoPAC硅膜的电性能,使用 Pa 在a-Si沟道层和H&barlow温度下的Tunderbar的 Pa tten控制的结晶工艺制造了低于100 nm的薄膜晶体管(TFT)。 (850°C)退火,精制PaTH工艺。 PaTH TFT在阈值电压,阈值电压下降,泄漏电流,亚阈值摆幅,开/关电流比,器件间均匀性等方面,比传统的固相结晶(SPC)TFT表现出优异的器件性能。二维器件仿真表明,PaTH TFT可与绝缘体上硅(SOI)器件媲美,使其成为制造未来高性能,低功耗3D集成电路的有希望的候选者。最后,介绍了一种超快速纳米光刻技术,即激光辅助直接压印(LADI)。 LADI显示了在10纳秒以下的分辨率下,在纳秒内直接在硅中对纳米结构进行构图的能力。该过程在多个学科中都有潜在的应用,并且可以扩展到其他材料和过程。

著录项

  • 作者

    Gu, Jian.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号