首页> 外文学位 >Modeling of the solid-liquid thermally induced-phase-separation (TIPS) membrane formation process.
【24h】

Modeling of the solid-liquid thermally induced-phase-separation (TIPS) membrane formation process.

机译:固液热诱导相分离(TIPS)膜形成过程的建模。

获取原文
获取原文并翻译 | 示例

摘要

The TIPS process is a pathway to the formation of a microporous membrane via phase separation caused by reducing the temperature of a homogeneous polymer solution. Solid-liquid (S/L) TIPS involves phase-separation into liquid and solid phases that form the pores and matrix, respectively, of the microporous structure. The major objective of this thesis is to develop a model that describes the phase separation process and captures the fundamental features of the S/L TIPS process. In addition, this thesis utilizes two experimental approaches to corroborate the model based upon measurements of real-time solidification and final membrane morphology. This model is the first to describe the complete microporous membrane-formation process.; Model equations developed for TIPS casting involve S/L phase separation due to a contact between a hot polymer solution and a planar boundary maintained below the solidification temperature. Allowance is made for cooling at the upper boundary of the hot solution. The model incorporates one-dimensional, unsteady-state heat and mass transfer. Furthermore, a scaling analysis technique that evaluates the relative importance of mass and heat transfer revealed that the mass transfer in most TIPS processes is negligible. Thus, the scaling analysis resulted in a simplified, heat-transfer model. This model is coupled with equations accounting for nucleation and growth of the crystalline solid phase. The resulting composite model is capable of predicting the instantaneous temperature profile, solidified region thickness, porosity and spherulite size.; Two polymer systems, polyvinylidene fluoride (PVDF)-dibutylphthalate (DBP) and isotactic polypropylene (iPP)/dotriacontane (C32H 66), were used for model validation. Microporous films were formed via TIPS processes for each system. The strategy employed for model validation involved the comparison of model predictions with data obtained using ultrasonic time-domain reflectometry (UTDR) to determine the instantaneous position of the interface between phase-separated and non-phase-separated phase during casting of PVDF/DBP films [Metters, 1996]. Also, the model predictions were compared to results obtained using scanning electron microscopy (SEM) and optical microscopy (OM) to determine the final spherulitic size of iPP/C 32H66 films. The latter experiments encompassed two different process (boundary) conditions: controlled cooling rate [Lloyd, 1993] and constant block temperature. The comparisons between model predictions and experimental results were conducted using trend analysis and statistical analysis methods. Results indicated that the model was able to account for a number of important trends including the growth of the phase-separated region. In addition, combined with a kinetic theory, the model can predict final spherulite sizes. Employing a rigorous statistical analysis technique, the model predictions for the spherulite size were compared with experimental measurements for both the controlled cooling rate and constant block-temperature process conditions. The comparison demonstrated that the model is corroborated for the controlled cooling rate condition for high concentrations and the constant block-temperature condition when the block-temperature is equal to or higher than room temperature. Consequently, the current model provides a thorough description of the complete TIPS membrane formation process and can help identify the process conditions that produce desired membrane morphologies.
机译:TIPS工艺是通过降低均相聚合物溶液温度而引起的相分离而形成微孔膜的途径。固液(S / L)TIPS涉及相分离成液相和固相,分别形成微孔结构的孔和基质。本文的主要目的是建立一个描述相分离过程并捕获S / L TIPS过程基本特征的模型。此外,本文基于实时凝固和最终膜形态的测量,利用两种实验方法来验证模型。该模型是第一个描述完整的微孔膜形成过程的模型。为TIPS铸造开发的模型方程式涉及S / L相分离,这是由于热聚合物溶液与保持在凝固温度以下的平面边界之间的接触所致。在热溶液的上边界留有冷却空间。该模型包含一维非稳态传热和传质。此外,评估质量和传热的相对重要性的比例分析技术显示,在大多数TIPS工艺中,传质可忽略不计。因此,结垢分析产生了简化的传热模型。该模型与考虑结晶固相成核和生长的方程式结合在一起。所得的复合模型能够预测瞬时温度曲线,凝固区厚度,孔隙率和球晶尺寸。模型验证使用了两种聚合物体系,聚偏二氟乙烯(PVDF)-邻苯二甲酸二丁酯(DBP)和全同立构聚丙烯(iPP)/三ria烷(C32H 66)。通过TIPS工艺为每个系统形成微孔膜。用于模型验证的策略涉及将模型预测与使用超声时域反射仪(UTDR)获得的数据进行比较,以确定在PVDF / DBP薄膜浇铸过程中相分离相和非相分离相之间的界面的瞬时位置[梅特斯,1996]。此外,将模型预测结果与使用扫描电子显微镜(SEM)和光学显微镜(OM)获得的结果进行比较,以确定iPP / C 32H66膜的最终球晶尺寸。后面的实验包括两个不同的过程(边界)条件:受控的冷却速率[Lloyd,1993]和恒定的块体温度。使用趋势分析和统计分析方法进行模型预测和实验结果之间的比较。结果表明该模型能够说明许多重要趋势,包括相分离区域的增长。此外,结合动力学理论,该模型可以预测最终球晶的尺寸。采用严格的统计分析技术,将球晶尺寸的模型预测与受控冷却速率和恒定块温工艺条件下的实验测量值进行了比较。比较结果表明,当模块温度等于或高于室温时,对于高浓度的受控冷却速率条件和模块温度恒定的情况,该模型得到了证实。因此,当前模型提供了完整的TIPS膜形成过程的详尽描述,可以帮助确定产生所需膜形态的过程条件。

著录项

  • 作者

    Li, Dongmei.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号