首页> 外文学位 >Mixed protonic-electronic conductors for hydrogen separation membranes.
【24h】

Mixed protonic-electronic conductors for hydrogen separation membranes.

机译:用于氢分离膜的混合质子电子导体。

获取原文
获取原文并翻译 | 示例

摘要

The chemical functionality of mixed protonic-electronic conductors arises out of the nature of the defect structure controlled by thermodynamic defect equilibria of the materials, and results in the ability to transport charged species. This dissertation is to develop a fundamental understanding of defect chemistry and transport properties of mixed protonic-electronic conducting perovskites for hydrogen separation membranes. Furthermore, it was aimed to develop the algorithm to predict how these properties affect the permeability in chemical potential gradients. From this objective, first of all, the appropriate equations governing proton incorporation into perovskite oxides were suggested and the computer simulation of defect concentrations across a membrane oxide under various conditions were performed. Electrical properties of p-type electronic defects at oxidizing conditions and n-type electrical properties of SrCe 0.95Eu0.05O3−δ at reducing atmospheres were studied. Defect equilibrium diagrams as a function of PO2 , PH2O ) produced from the Brouwer method were verified by computational simulation and electrical conductivity measurements. The chemical diffusion of hydrogen through oxide membranes was described within the framework of Wagner's chemical diffusion theory and it was solved without any simplifying assumptions on functional dependence of partial conductivity due to the successful numerical modeling of partial conductivities as a function of both hydrogen and oxygen partial pressures. Finally the hydrogen permeability of Eu and Sm doped SrCeO3−δ was studied as a function of temperature, hydrogen partial pressure gradient, and water vapor pressure gradient. The dopant dependence of hydrogen permeability was explained in terms of the difference in ionization energy and ionic radius of dopant.
机译:混合质子-电子导体的化学功能性是由材料的热力学缺陷平衡所控制的缺陷结构的性质引起的,并具有传输带电物质的能力。本论文旨在对氢分离膜的质子-电导混合钙钛矿的缺陷化学和输运性质有一个基本的认识。此外,旨在开发一种算法来预测这些特性如何影响化学势梯度中的磁导率。从这个目标出发,首先,提出了控制质子掺入钙钛矿氧化物的合适方程式,并在各种条件下进行了跨膜氧化物的缺陷浓度的计算机模拟。氧化条件下p型电子缺陷的电学性质和还原气氛下SrCe 0.95 Eu 0.05 O 3-δ的n型电学性质被研究了。缺陷平衡图作为 P O 2 P H的函数通过计算仿真和电导率测量验证了Brouwer方法产生的 2 O )。在瓦格纳化学扩散理论的框架内描述了氢通过氧化膜的化学扩散,由于成功地将部分电导率作为氢和氧的函数,数值模拟成功地解决了对部分电导率函数依赖性的任何简化假设压力。最后,研究了Eu和Sm掺杂的SrCeO 3-δ的氢渗透率与温度,氢分压梯度和水蒸气压梯度的关系。用电离能和掺杂剂的离子半径之差来解释氢渗透性的掺杂剂依赖性。

著录项

  • 作者

    Song, Sun-Ju.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号