首页> 外文学位 >Magnetic resonance imaging techniques for physiological contrast visualization at ultra-high magnetic fields.
【24h】

Magnetic resonance imaging techniques for physiological contrast visualization at ultra-high magnetic fields.

机译:用于在超高磁场下进行生理对比显示的磁共振成像技术。

获取原文
获取原文并翻译 | 示例

摘要

The race to build magnets for magnetic resonance imaging in humans at ever-increasing magnetic field strengths is motivated by basic physics: for a given sample, the observable NMR signal is directly proportional to the main magnetic field strength, B0. Currently, however, most MRI research at ultra-high field has been limited to functional imaging (FMRI) and spectroscopy (MRS) of structures that can be visualized using small surface RF coils a few centimeters in diameter. Whole-brain and body structural and pathological imaging is largely restricted to lower fields primarily due to RF issues, among them limitations on RF power that can be applied (SAR restrictions) and B1 inhomogeneity, which becomes particularly significant at magnetic fields of 3 Tesla and above for 1H (proton) imaging.; T2 contrast is perhaps the most interesting form of MRI contrast for visualizing structure and pathology, since most disease states are characterized by elevated T2. The standard imaging sequence for acquiring T2-weighted images at low magnetic fields is the spin echo (SE) sequence, which uses one or more 180° refocusing pulses to cancel the T2 component of the T2* relaxation process. At ultra-high magnetic fields, however, uniform 180° pulses are extremely difficult to implement due to B1 inhomogeneity and require high RF power, so alternative techniques would be very useful for T2 imaging at ultra-high field.; The PSIF sequence is analyzed as such a sequence. The PSIF sequence produces images with T2 weighting by sampling the steady state free precession (SSFP) echo. The inherent SNR of the PSIF technique is Tower than SE, but the RF power requirements are substantially lower, the time required for each acquisition is shorter, and it is relatively insensitive to B1 inhomogeneity. These properties are particularly suited to the problems experienced at ultra-high magnetic fields.
机译:建立磁场以不断增强磁场强度来进行人体磁共振成像的竞赛是由基本物理学推动的:对于给定的样品,可观察到的NMR信号与主要磁场强度 B 0 。但是,目前,大多数在超高场的MRI研究仅限于功能成像(FMRI)和光谱学(MRS),这些结构可以使用直径为几厘米的小表面RF线圈来可视化。主要由于射频问题,全脑和人体的结构和病理成像很大程度上局限于较低的视野,其中包括可施加的射频功率的限制(SAR限制)和 B 1 不均匀性,在3特斯拉及以上的磁场中对于 1 H(质子)成像尤为重要。 T 2 对比可能是用于可视化结构和病理的MRI对比中最有趣的形式,因为大多数疾病状态的特征是 T 2 。在低磁场下获取 T 2 加权图像的标准成像序列是自旋回波(SE)序列,它使用一个或多个180°重聚焦脉冲来消除 T 2 *松弛过程的 T 2 组件。但是,在超高磁场下,由于 B 1 的不均匀性,很难实现均匀的180°脉冲,并且需要高RF功率,因此替代技术将非常有用用于超高场的 T 2 成像。将PSIF序列分析为这样的序列。 PSIF序列通过对稳态自由进动(SSFP)回波进行采样来生成权重为 T 2 的图像。 PSIF技术的固有SNR比SE高,但RF功率要求低得多,每次采集所需的时间更短,并且对 B 1 相对不敏感子>不均匀。这些特性特别适合于超强磁场中遇到的问题。

著录项

  • 作者

    Auerbach, Edward John, Jr.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Health Sciences Radiology.; Biophysics General.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 预防医学、卫生学;生物物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号