首页> 外文学位 >Immersed boundary methods for high-resolution simulation of atmospheric boundary-layer flow over complex terrain.
【24h】

Immersed boundary methods for high-resolution simulation of atmospheric boundary-layer flow over complex terrain.

机译:沉浸边界方法用于高分辨率模拟复杂地形上的大气边界层流动。

获取原文
获取原文并翻译 | 示例

摘要

Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.;First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM.;Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models.;Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain.;Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.
机译:中尺度模型,例如天气研究和预报(WRF)模型,越来越多地用于高分辨率模拟,尤其是在复杂地形中,但是与地形跟随坐标相关的误差降低了解决方案的准确性。使用替代的笛卡尔网格化技术(称为沉浸边界方法(IBM))可减轻坐标转换误差并消除对地形坡度的限制,该限制目前将中尺度模型限制为缓慢变化的地形。本文提出了一种浸入边界法,用于数值天气预报。该方法的使用促进了WRF中尺度模型中复杂地形甚至城市地形的显式解析。首先,介绍了存在复杂地形时WRF模型中出现的误差。这是通过使用标量对流测试案例并将数值解与解析解进行比较来完成的。给出了针对不同平流方案,网格分辨率和纵横比以及不同程度的地形坡度的结果。为了进行比较,使用IBM展示了来自相同模拟的结果。然后描述了二维和三维浸没边界方法,以及特定于WRF代码中IBM实现的详细信息。我们的IBM能够施加Dirichlet和Neumann边界条件。此外,提出了一种在沉浸边界处耦合大气物理参数化的方法,这使IB方法在数值天气预报模型的背景下更具功能性。通过比较使用IBM和地形跟踪网格时平缓地形坡度的解决方案,验证了二维IB方法。在Agnesi山的女巫上流的典型案例可以验证基本的无滑移和零梯度边界条件。山谷中特定的昼夜加热会产生杂散风,用于验证通量(非零)边界条件的使用。这种绝热流设置还与大气物理参数化耦合,该参数化计算了表面通量,表明IBM可以与大气模型中的各种陆地表面参数化耦合。此外,IB方法扩展到三个维度,同时使用三线性和距离反距离加权插值。给出了三维山上地转流的结果。已经发现,虽然使用三线性插值的IB方法对于简单的三维几何形状效果很好,但是对于极其复杂的几何形状(如在三维城市环境中发现的),则需要一种更加灵活和健壮的方法。使用逆距离权重设计了第二种更灵活的沉浸边界方法,并将结果与​​第一种IBM方法进行了比较。另外,描述了将具有解析复杂几何形状的域嵌套在父域中而没有解析复杂几何形状的功能。新的IBM方法用于以单向嵌套配置对俄克拉荷马城的城市地形进行建模,其中父边界提供了横向边界条件。最后,IB方法被扩展为包括用于粗糙表面的墙模型参数化。提出了两种可能的实现方式,一种使用对数律来重构实体域外部的速度,另一种则重构在浸没边界处的剪应力而不是速度。这些方法在中性大气边界层在平坦地形上流动的三维规范情况下进行了测试。

著录项

  • 作者

    Lundquist, Katherine Ann.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.;Atmospheric Sciences.;Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号