首页> 外文学位 >Multiscale computational modeling of damage evolution in viscoelastic particulate composites with growing cracks.
【24h】

Multiscale computational modeling of damage evolution in viscoelastic particulate composites with growing cracks.

机译:裂纹扩展的粘弹性颗粒复合材料损伤演化的多尺度计算模型。

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous viscoelastic solids are a complex class of materials and accurate prediction of their mechanical response remains a challenge. An even more challenging task is the prediction of failure in structural components made from this class of materials. One of the primary recognized failure modes for heterogeneous solids is the development of new internal boundaries in the form of cracks. In this form of failure, multiple cracks on widely varying length scales can interact to produce sufficient energy dissipation to cause total destruction of the component. Furthermore, components that possess multiple length scales happen often in nature, such as composite materials used in the aircraft industry, geologic media, and asphaltic roadways. This suggests the need for improved models besides costly experimentally based design procedures, making it propitious to utilize multiscale algorithms.;This dissertation presents a multiscale computational model for predicting damage evolution in viscoelastic particulate composites. The model is based on continuum mechanics and is implemented into a time-marching multiscale finite element formulation that employs a viscoelastic cohesive zone model to predict rate-dependent damage evolution in the form of hundreds of cracks. The algorithm solves problems on three simultaneous length scales: microcrack (micro-scale); microstructure (local-scale) and the structural component (global-scale). This approach models widely different length scales using separate but two-way coupled algorithms, thus obviating the necessity to model every crack/heterogeneity at the global scale. The solution for each length scale is linked to the neighboring length scale by a homogenization theorem.;Therefore, models that can accurately predict the evolution of damage and the ultimate failure event, though complex, would appear to be useful for design purposes. This dissertation includes a detailed description of the methodology followed by a few example problems to illustrate the approach. The model is also applied to predict life of asphaltic pavements, subjected to different sets of design variables, such as aggregate volume fractions and shape, asphalt layer thickness and truck loads.
机译:非均质粘弹性固体是一类复杂的材料,准确预测其机械响应仍然是一个挑战。更具挑战性的任务是预测由此类材料制成的结构部件的故障。公认的非均质固体失效模式之一是以裂纹形式形成新的内部边界。在这种形式的故障中,长度变化范围很大的多个裂纹可能相互作用,产生足够的能量耗散,从而导致组件完全损坏。此外,自然界中经常会出现具有多个长度比例尺的零部件,例如飞机工业中使用的复合材料,地质介质和沥青路面。这表明除了昂贵的基于实验的设计程序外,还需要改进的模型,这有利于利用多尺度算法。本论文提出了一种用于预测粘弹性颗粒复合材料损伤演化的多尺度计算模型。该模型基于连续力学,并被实施为按时间顺序进行的多尺度有限元公式,该公式采用粘弹性内聚力区域模型来预测成百上千个裂缝的速率相关的损伤演化。该算法在三个同时的长度尺度上解决了问题:微裂纹(micro-crack);微观结构(局部尺度)和结构成分(全局尺度)。这种方法使用单独的但双向耦合的算法对不同长度的尺度进行建模,从而避免了在全局尺度上对每个裂纹/非均质性进行建模的必要性。每个长度尺度的解决方案通过一个均化定理与相邻的长度尺度联系起来;因此,可以准确预测损伤演变和最终破坏事件的模型,尽管很复杂,但对于设计目的来说似乎很有用。本文对方法论进行了详细的描述,并在后面举例说明了该方法。该模型还可用于预测沥青路面的寿命,该寿命受到不同设计变量集的影响,例如总体积分数和形状,沥青层厚度和卡车荷载。

著录项

  • 作者

    Soares, Roberto Firmeza.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering Civil.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 206 p.
  • 总页数 206
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号