首页> 外文学位 >Atom interferometer-based gravity gradiometer measurements.
【24h】

Atom interferometer-based gravity gradiometer measurements.

机译:基于原子干涉仪的重力梯度仪测量。

获取原文
获取原文并翻译 | 示例

摘要

A cold source, Cesium atomic fountain instrument was constructed to measure gravitational gradients based on atomic interference techniques. Our instrument is one of the first gradiometers that is absolute. The defining ruler in our apparatus is the wavelength of the cesium ground-state hyperfine splitting, which has an accuracy of ≤1 part per thousand determined by the oscillators used in our clocks. The gradiometer is based on the light pulse atom interferometer technique employing a π/2 − π − π/2 pulse sequence on two identical ensembles of cesium atoms. We have achieved a differential acceleration sensitivity of 4 × 10−9g/ Hz with an accuracy of ≤ 1 × 10−9g in a vertical gravity gradiometer configuration. A detection system was implemented to suppress sensitivity to laser amplitude and frequency noise. Immunity to vibration-induced acceleration noise was implemented with a data analysis technique not requiring the use of an active vibration isolation system. The gravity gradiometer was characterized against systematic environmental effects including reference platform tilt and vibration.; The accuracy of the gradiometer was characterized through a measurement of the Newtonian gravitational constant, G. The change in the gravitational field along one dimension was measured when a well-characterized lead, Pb, mass is displaced. A value of G = (6.693 ± 0.027 ± 0.021) × 10−11 m3/( kg · s2) is reported with the two errors representing statistics and systematics, respectively. The experiment introduces a new class of precision measurement experiments to determine G through the quantum mechanical description of atom-photon interactions, vastly different from existing methods with their unresolved systematics. Straightforward enhancements to our technique could lead to an absolute uncertainty in G that reaches or exceeds that of the best current measurements.; As a proof of principle we performed a demonstration of an atom interferometer based horizontal gravity gradiometer measuring the Tz,x component of the gravitational gradient tensor was performed. The horizontal configuration is maximally sensitive to angular accelerations of the platform. A proof of principle angular acceleration sensitivity of 2 × 10−6 rads/Hz is observed for a T = 15ms interferometer time. A Tz,x has the potential to aid in inertial navigation, especially on the long term time scale where the atomic gyroscope suffers from drift.
机译:基于原子干涉技术,构造了一种冷源铯原子喷泉仪器来测量重力梯度。我们的仪器是最早的绝对式梯度仪之一。我们设备中的主要标尺是铯基态超细分裂的波长,其精度由我们的时钟中使用的振荡器确定,精确度≤千分之一。梯度计基于光脉冲原子干涉仪技术,该技术在两个相同的铯原子集合上使用π/ 2-π-π/ 2脉冲序列。我们实现了4×10 −9 g / Hz 的差分加速度敏感度>在垂直重力梯度仪配置中的精度≤1×10 −9 g。实施了检测系统以抑制对激光振幅和频率噪声的敏感性。无需使用主动隔振系统即可通过数据分析技术实现对振动引起的加速度噪声的抗扰性。重力梯度仪针对包括参考平台倾斜和振动在内的系统环境影响进行了表征。梯度计的精度通过测量牛顿引力常数G来表征。当特征明确的铅Pb发生位移时,沿一维测量引力场的变化。 G 的值=(6.693±0.027±0.021)×10 −11 m 3 /( kg · s 2 ),其中两个误差分别代表统计和系统误差。该实验引入了一类新的精密测量实验,该方法通过原子-光子相互作用的量子力学描述来确定G,这与现有方法及其未解决的系统方法大不相同。直接改进我们的技术可能导致G的绝对不确定性达到或超过最佳电流测量的不确定性。作为原理上的证明,我们对基于原子干涉仪的水平重力梯度仪进行了演示,该水平仪测量了重力梯度张量的 T z,x 分量。水平配置对平台的角加速度最大敏感。原理角加速度灵敏度为2×10 −6 rad s /在 T = 15ms干涉仪时间观察到 Hz T z,x 具有帮助惯性导航的潜力,尤其是在原子陀螺仪会发生漂移的长期时间尺度上。

著录项

  • 作者

    Fixler, Jeffrey B.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Physics Atomic.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子物理学、原子物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号