首页> 外文学位 >Propagation and Excitation of Electromagnetic Waves in the Earth's Inner Magnetosphere.
【24h】

Propagation and Excitation of Electromagnetic Waves in the Earth's Inner Magnetosphere.

机译:电磁波在地球内磁层中的传播和激发。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses the generation and/or propagation of four plasma waves in the Earth's magnetosphere, electromagnetic ion cyclotron waves (EMIC), magnetosonic waves (MS), whistler-mode chorus, and plasmaspheric hiss. All four types of waves are important for dynamics of relativistic electrons in the Earth's radiation belts. The role of dayside and nightside chorus and EMIC waves in the storm time plume is evaluated by a pitch angle diffusion model of MeV electrons, where the effects of the distinct local time distributions of these waves are taken into account. We found that EMIC waves not only cause loss of MeV electrons, but also create gradients in the pitch angle distribution, which assists chorus waves in scattering MeV electrons into the loss cone. The ability of EMIC waves to cause scattering loss of relativistic electrons in models is sensitively dependent on the EMIC wave spectrum, especially the wave intensity just below He+ gyrofrequency. Later we carry out numerical simulation of the EMIC wave generation in a storm time magnetosphere, including a high-density plume with fine-scale density variation. Our simulation indicates that regions of preferential EMIC wave excitation are high density plumes and the plasmapause, and both the wave frequency spectrum and wave power are modulated by thermal plasma density variations inside the plume, which can reduce the electron minimum resonant energy down below 2 MeV. The effects of heavy ion composition on the minimum electron resonant energy are also evaluated. A new self-consistent physical model, obtained by coupling the Rice Convection Model (RCM), the Ring current and Atmospheric interaction Model (RAM), and ray tracing model (HOTRAY code), is used to simulate the transport and loss of ring current protons during the April 2001 storm and then calculate the path-integrated gain of EMIC waves globally throughout the storm. The resultant proton distribution is also analyzed for instability of magnetosonic waves, which is driven by harmonic cyclotron resonance with proton ring distributions, i.e., a peak in phase space density along the v⊥ axis. We find that the MS wave frequency spectrum is modulated by the ratio of ring velocity to the Alfvenic speed and MS waves with low harmonic proton gyrofrequencies ( 20OH+) tend to be unstable inside the high density plume and plasmasphere while MS waves with higher harmonic gyrofrequencies (> 20OH+) are unstable in the dayside trough region. In addition to the numerical simulation, proton rings are also observed from the MPA detector on board LANL spacecraft. These observed rings can be unstable to the MS waves over a broad range of local time from 1000 to 2200. Finally, we perform a ray tracing study on chorus waves in three dimensions, and find that chorus can evolve toward incoherent hiss due to multiple bounces inside the plasmapshere. Our 3D ray tracing study also accounts for the distinct local time distribution of those two emissions.
机译:本文论述了地球磁层中四个等离子波的产生和/或传播,电磁离子回旋波(EMIC),磁声波(MS),吹口哨合唱和等离子层嘶声。所有这四种类型的波对于地球辐射带中相对论电子的动力学都很重要。通过MeV电子的俯仰角扩散模型评估了日夜合唱和EMIC波在风暴时间羽流中的作用,其中考虑了这些波的独特局部时间分布的影响。我们发现EMIC波不仅会造成MeV电子的损失,而且还会在桨距角分布中产生梯度,这有助于合唱波将MeV电子散射到损失锥中。 EMIC波在模型中引起相对论电子散射损耗的能力敏感地取决于EMIC波谱,尤其是He +陀螺频率以下的波强度。稍后,我们对风暴时间磁层中的EMIC波的产生进行了数值模拟,包括具有小尺度密度变化的高密度羽流。我们的模拟表明,优先的EMIC波激发区域是高密度羽流和等离子体暂停,并且波谱内部的热等离子体密度变化调制了波谱和波功率,这可以将电子最小共振能降低到2 MeV以下。还评估了重离子组成对最小电子共振能的影响。通过耦合莱斯对流模型(RCM),环流和大气相互作用模型(RAM)以及射线追踪模型(HOTRAY代码)获得的新的自洽物理模型用于模拟环流的传输和损耗质子在2001年4月的风暴中,然后计算整个风暴期间EMIC波的路径积分增益。还分析了所得质子分布的磁声波不稳定性,这是由具有质子环分布的谐波回旋共振引起的,即沿v&bottom的相空间密度的峰值。轴。我们发现MS波频谱是由环速度与Alfvenic速度之比调制的,低谐波质子回旋频率(<20OH +)的MS波在高密度羽流和等离子层内部趋于不稳定,而高谐波回旋频率的MS波(> 20OH +)在日间低谷区域不稳定。除了数值模拟之外,还可以从LANL航天器上的MPA检测器观察到质子环。在1000到2200的广泛本地时间范围内,这些观测到的环对MS波可能不稳定。最后,我们对三维合唱波进行了射线追踪研究,发现由于多次弹跳,合唱可能朝着不连贯的嘶嘶声演变。在血浆中。我们的3D射线追踪研究还说明了这两种发射的不同的本地时间分布。

著录项

  • 作者

    Chen, Lunjin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Aeronomy.;Physics Fluid and Plasma.;Physics Astrophysics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号