首页> 外文学位 >Optimisation multi-objectif des systemes energetiques.
【24h】

Optimisation multi-objectif des systemes energetiques.

机译:能源系统的多目标优化。

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand of energy and the environmental concerns related to greenhouse gas emissions lead to more and more private or public utilities to turn to nuclear energy as an alternative for the future. Nuclear power plants are then called to experience large expansion in the coming years. Improved technologies will then be put in place to support the development of these plants. This thesis considers the optimization of the thermodynamic cycle of the secondary loop of Gentilly-2 nuclear power plant in terms of output power and thermal efficiency.;Whether it is the case of superheating or regeneration, we are confronted in all cases to an optimization problem involving two conflicting objectives, as increasing the efficiency imply the decrease of mechanical work and vice versa. Solving this kind of problem does not lead to unique solution, but to a set of solutions that are tradeoffs between the conflicting objectives. To search all of these solutions, called Pareto optimal solutions, the use of an appropriate optimization algorithm is required. Before starting the optimization of the secondary loop, we developed a thermodynamic model of the secondary loop which includes models for the main thermal components (e.g., turbine, moisture separator-superheater, condenser, feedwater heater and deaerator). This model is used to calculate the thermodynamic state of the steam and water at the different points of the installation. The thermodynamic model has been developed with Matlab and validated by comparing its predictions with the operating data provided by the engineers of the power plant. The optimizer developed in VBA (Visual Basic for Applications) uses an optimization algorithm based on the principle of genetic algorithms, a stochastic optimization method which is very robust and widely used to solve problems usually difficult to handle by traditional methods. Genetic algorithms (GAs) have been used in previous research and proved to be efficient in optimizing heat exchangers networks (HEN) (Dipama et al., 2008). So, HEN have been synthesized to recover the maximum heat in an industrial process. The optimization problem formulated in the context of this work consists of a single objective, namely the maximization of energy recovery. The optimization algorithm developed in this thesis extends the ability of GAs by taking into account several objectives simultaneously. This algorithm provides an innovation in the method of finding optimal solutions, by using a technique which consist of partitioning the solutions space in the form of parallel grids called "watching corridors". These corridors permit to specify areas (the observation corridors) in which the most promising feasible solutions are found and used to guide the search towards optimal solutions. A measure of the progress of the search is incorporated into the optimization algorithm to make it self-adaptive through the use of appropriate genetic operators at each stage of optimization process. The proposed method allows a fast convergence and ensure a diversity of solutions. Moreover, this method gives the algorithm the ability to overcome difficulties associated with optimizing problems with complex Pareto front landscapes (e.g., discontinuity, disjunction, etc.). The multi-objective optimization algorithm has been first validated using numerical test problems found in the literature as well as energy systems optimization problems. Finally, the proposed optimization algorithm has been applied for the optimization of the secondary loop of Gentilly-2 nuclear power plant, and a set of solutions have been found which permit to make the power plant operate in optimal conditions. (Abstract shortened by UMI.);In this thesis, investigations are carried out to determine the optimal operating conditions of steam power cycles by the judicious use of the combination of steam extraction at the different stages of the turbines.
机译:能源需求的增长以及与温室气体排放有关的环境问题导致越来越多的私人或公共事业转向核能作为未来的替代方案。然后,要求核电站在未来几年中经历大规模的扩张。然后将采用改进的技术来支持这些工厂的发展。本文从输出功率和热效率的角度考虑了对Gentilly-2核电站二次回路热力学循环的优化。无论是过热还是再生,我们在所有情况下都面临优化问题。涉及两个相互矛盾的目标,因为提高效率意味着减少机械功,反之亦然。解决此类问题并不会带来独特的解决方案,而是会产生一系列在相互冲突的目标之间进行权衡的解决方案。为了搜索所有这些称为帕累托最优解的解决方案,需要使用适当的优化算法。在开始优化次级回路之前,我们开发了次级回路的热力学模型,其中包括主要热组件(例如涡轮机,水分分离器-过热器,冷凝器,给水加热器和除氧器)的模型。该模型用于计算设备不同位置的蒸汽和水的热力学状态。热力学模型是由Matlab开发的,通过将其预测结果与电厂工程师提供的运行数据进行比较来进行验证。在VBA(应用程序的Visual Basic)中开发的优化器使用基于遗传算法原理的优化算法,这是一种非常强大的随机优化方法,广泛用于解决传统方法通常难以处理的问题。遗传算法(GA)已用于先前的研究中,并被证明可有效地优化热交换器网络(HEN)(Dipama et al。,2008)。因此,已经合成了HEN,以在工业过程中回收最大热量。在这项工作中提出的优化问题包括一个目标,即能量回收的最大化。本文开发的优化算法通过同时考虑多个目标来扩展遗传算法的能力。该算法通过使用一种技术来寻找最优解,该技术的创新之处在于将解决方案空间划分为称为“观察走廊”的平行网格形式。这些走廊允许指定找到最有希望的可行解决方案的区域(观察走廊),并用于指导寻找最佳解决方案。在优化过程中,将搜索进度的度量合并到优化算法中,以通过使用适当的遗传算子使其自适应。所提出的方法允许快速收敛并确保解决方案的多样性。此外,该方法使算法具有克服与优化具有复杂帕累托前景观的问题相关的困难的能力(例如,不连续,分离等)。首先使用文献中发现的数值测试问题以及能源系统优化问题对多目标优化算法进行了验证。最后,将所提出的优化算法应用于Gentilly-2核电站二次回路的优化,并找到了一套解决方案,可以使电厂在最佳条件下运行。 (本文由UMI简化。);本文旨在通过明智地使用涡轮机不同阶段的蒸汽提取组合来确定蒸汽动力循环的最佳运行条件。

著录项

  • 作者

    Dipama, Jean.;

  • 作者单位

    Ecole Polytechnique, Montreal (Canada).;

  • 授予单位 Ecole Polytechnique, Montreal (Canada).;
  • 学科 Engineering Nuclear.;Energy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号