首页> 外文学位 >Reduction of chlorinated hydrocarbons by nano-sized iron.
【24h】

Reduction of chlorinated hydrocarbons by nano-sized iron.

机译:纳米铁还原氯代烃。

获取原文
获取原文并翻译 | 示例

摘要

Chlorinated hydrocarbons are common groundwater contaminants in the U.S. treatment of groundwater contaminated with chlorinated hydrocarbons by zero-valent metal is one of the latest innovative technologies for environmental remediation. In the past decade, zero-valent iron has been applied in situ using permeable reactive barriers (PRBs) in which a porous wall of zero-valent iron is constructed in the path of groundwater flow. However, mechanistic details of the reactions have not been fully understood to provide sufficient information to properly design PRBs and to extend the treatment capabilities to wider range of compounds and conditions. The use of nano-sized iron is an attractive alternative to the conventional PRBs technique because of possible advantages in very rapid mass transfer, in-situ facile delivery of particles, and changes in reaction mechanism with very small particle size.;In this work, nano-sized iron was synthesized using chemical borohydride reduction of ferric iron and applied to a total of 18 chlorinated hydrocarbons including chlorinated methanes, ethylenes and ethanes. Parent species disappearance and the formation of reaction intermediates and products were monitored. Various physicochemical factors including pH, metal loading, initial substrate concentration, and hydrogen concentration were examined to elucidate dominant reaction mechanisms.;Results indicate that reduction by nano-sized iron involves different reaction mechanisms specific to each class of compounds. Chlorinated methanes and ethanes reacted with nano-sized iron primarily via a direct reduction mechanism (possibly electron transfer) to give rise to less chlorinated or fully dechlorinated products, whereas chlorinated ethylenes were reduced mostly via a indirect reduction mechanism (possibly catalytic hydrogenation), and transformed to ethylene and ethane with no production of chlorinated intermediates.;Pseudo-first order kinetics adequately described the reaction kinetics of most compounds tested. The reduction of some of chlorinated ethylenes, however, was found to be affected by reaction site saturation, requiring more complicated kinetics models. Modeling with mixed-order kinetics and modified Langmuir-Hinshelwood-Houger-Watson (LHHW) kinetics gave better prediction of experimental data for such cases.;The results obtained in this study regarding reaction pathways and reaction kinetics will help to clarify the reactivity of nano-sized iron and to predict and optimize the performance of treatment systems based on nanoscale particles.
机译:氯代烃是美国处理零价金属被氯代烃污染的地下水的常见地下水污染物,是用于环境修复的最新创新技术之一。在过去的十年中,零价铁已使用可渗透反应性屏障(PRB)现场应用,其中在地下水流动路径中构造了零价铁的多孔壁。但是,尚未充分了解反应的机理细节,无法提供足够的信息来正确设计PRB,并将处理能力扩展至更广泛的化合物和条件。纳米铁的使用是传统PRB技术的一种有吸引力的替代方法,因为它在非常快速的质量转移,原位便捷地输送颗粒以及在非常小的颗粒尺寸下改变反应机理方面可能具有优势。纳米级铁是使用三价铁的化学硼氢化物还原法合成的,并应用于总共18种氯化烃,包括氯化甲烷,乙烯和乙烷。监测亲本的消失以及反应中间体和产物的形成。检查了各种物理化学因素,包括pH,金属负载,初始底物浓度和氢浓度,以阐明主要的反应机理。结果表明,纳米铁的还原涉及针对每种化合物的不同反应机理。氯化甲烷和乙烷主要通过直接还原机制(可能通过电子转移)与纳米铁反应生成较少的氯化或完全脱氯的产物,而氯化乙烯主要通过间接还原机制(可能是催化加氢)进行还原,并且伪一级动力学足以描述大多数测试化合物的反应动力学。但是,发现某些氯化乙烯的还原受反应位点饱和度的影响,因此需要更复杂的动力学模型。混合顺序动力学模型和改进的Langmuir-Hinshelwood-Houger-Watson(LHHW)动力学模型为此类情况提供了更好的实验数据预测;该研究中有关反应途径和反应动力学的结果将有助于阐明纳米的反应性铁,以预测和优化基于纳米级颗粒的处理系统的性能。

著录项

  • 作者

    Song, Hocheol.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Environmental science.;Environmental engineering.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 298 p.
  • 总页数 298
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号