首页> 外文学位 >Hybrid gas -to -particle conversion and chemical vapor deposition for production of high -surface area films.
【24h】

Hybrid gas -to -particle conversion and chemical vapor deposition for production of high -surface area films.

机译:混合气体-颗粒转化和化学气相沉积,用于生产高表面积薄膜。

获取原文
获取原文并翻译 | 示例

摘要

A hybrid process, based upon gas-to-particle conversion and chemical vapor deposition, is presented as an alternative technique for producing porous films with the main advantages of solvent-free, low-substrate temperature operation. Starting from solid precursors, nanoparticles were produced in the vapor phase. Downstream of this reaction zone, these nanoparticles were collected via thermophoresis onto a cooled substrate forming a porous film. Initially, alumina (Al2O3) films were produced. Later, multi-component processing was explored by incorporating platinum (Pt) nanoparticles into the Al2O3 matrix leading to the production of Pt/Al 2O3 films by two routes: simultaneous precursor injection processing or by a layer-by-layer approach.;In single component processing, the formation of nanoparticle aggregates was evident within the amorphous Al2O3 films. Aggregates, composed of these particles, are likely held together by relatively weak van der Waals forces leading to the observed poor physical cohesion. In multi-component processing, reasonable control of composition and distribution of species is possible with Pt nanoparticles appearing to be co-agglomerated with alumina. Deposited crystalline Pt nanoparticles may encourage the crystallization of the amorphous Al2O3. Finally, from chemisorption results, the produced sample appears to have potentially greater catalytic activity than a commercially available standard.;A model is in development to study nanoparticle interactions with a gas and deposition occurring in stagnation flow onto the cooled horizontal substrate within the tubular reactor. Using velocity and temperature fields generated from numerical solutions to the Navier-Stokes and energy equations, particle trajectories were calculated from the summation of drag, gravitational, thermophoretic, and Brownian forces. In rectangular coordinates, cooling stage width to reactor diameter ratio, deposition stage temperature, and initial velocity were the primary parameters varied in this study. An optimum balance between thermophoretic and drag forces appears to be the key factor in obtaining high yield and surface uniformity in the films. The results also suggest that Brownian motion is not a significant contributor to deposition under conditions in this study.
机译:提出了一种基于气体-颗粒转化和化学气相沉积的混合工艺,作为一种生产多孔膜的替代技术,其主要优点是无溶剂,低底物温度操作。从固体前体开始,在气相中产生纳米颗粒。在该反应区的下游,通过热泳将这些纳米颗粒收集到冷却的基材上,形成多孔膜。最初,生产氧化铝(Al2O3)膜。后来,通过将铂(Pt)纳米粒子掺入Al2O3基体中,探索了多组分工艺,从而通过两种途径生产Pt / Al 2O3膜:同步前驱物注入工艺或逐层方法。成分处理中,在无定形Al2O3薄膜中明显形成了纳米颗粒聚集体。由这些颗粒组成的聚集体可能通过相对较弱的范德华力保持在一起,从而导致观察到的较弱的物理凝聚力。在多组分加工中,合理的控制组分的组成和分布是可能的,Pt纳米颗粒似乎与氧化铝共聚。沉积的结晶Pt纳米颗粒可促进非晶Al2O3的结晶。最后,从化学吸附结果来看,所产生的样品似乎具有比市售标准品更大的催化活性。;正在开发一种模型来研究纳米颗粒与气体的相互作用以及在滞流中发生在管状反应器内冷却的水平基质上的沉积。使用从Navier-Stokes数值解和能量方程生成的速度和温度场,根据阻力,重力,热泳和布朗力的总和计算出粒子轨迹。在直角坐标系中,冷却台宽度与反应器直径之比,沉积台温度和初始速度是本研究中变化的主要参数。热泳和阻力之间的最佳平衡似乎是在薄膜中获得高屈服和表面均匀性的关键因素。结果还表明,在该研究条件下,布朗运动不是沉积的重要因素。

著录项

  • 作者

    Nguyen, Quynh Tan.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号