首页> 外文学位 >A Schrodinger wave mechanics formalism for the eikonal problem and its associated gradient density computation.
【24h】

A Schrodinger wave mechanics formalism for the eikonal problem and its associated gradient density computation.

机译:Schrodinger波浪力学形式主义的典型问题及其相关的梯度密度计算。

获取原文
获取原文并翻译 | 示例

摘要

Many computational techniques based on classical mechanics exist but surprisingly there isn't a concomitant borrowing from quantum mechanics. Our work shows an application of the Schrodinger formalism to solve the classical eikonal problem---a nonlinear, first order, partial differential equation of the form || ▿ S || = f, where the forcing function f(X) is a positive valued bounded function and ▿ denotes the gradient operator. Hamiltonian Jacobi based solvers like the fast marching and fast sweeping methods solve for S by the Godunov upwind discretization scheme. In sharp contrast to that, we present a Schrodinger wave mechanics formalism to solve the eikonal equation by recasting it as a limiting case of a quantum wave equation. We show that a solution to the non-linear eikonal equation is obtained in the limit as Planck's constant h (treated as a free parameter) tends to zero of the solution to the corresponding linear Schrodinger equation.;We begin with, by considering the Euclidean distance function problem, a special case of the eikonal equation where the forcing function is everywhere identically equal to one. We show that the solution to the Schrodinger wave function can be expressed as a discrete convolution between two functions efficiently computable by the Fast Fourier Transforms (FFT). The Euclidean distance function can then be recovered from the exponent of the wave function. Since the wave function is computed for a small but non-zero h, the obtained solution is an approximation. We show convergence of our approximate closed form solution for the Euclidean distance function problem to the true solution as h→0 and also bound the error for a given value of h. Moreover the differentiability of our solution allows us to compute its first and second derivatives in closed form, also computable by a series of convolutions. In order to determine the sign of the distance function (positive inside a close region and negative outside), we compute the winding number in 2D and topological degree in 3D, by explicitly showing that their computations can also be done via convolutions. We show an application our of method by computing the medial axes for a set of 2D silhouettes. A major advantage of our approach over the other classical methods is that, we do not require a spatial discretization of gradient operators as we obtain a closed-form solution for the wave function.;For the general eikonal problem where the forcing can be an arbitrary but positive and bounded function, the Schrodinger equation turns out to be a generalized, screened Poisson equation. Despite being linear, it does not have a closed-form solution. We use a standard perturbation analysis approach to compute the solution which is guaranteed to converge for all positive and bounded forcing functions. The perturbation technique requires a sequence of discrete convolutions which can be performed using the FFT.;Finally using stationary phase approximations we establish a mathematical result relating the density of the gradient(s) of distance function S and the scaled power spectrum of the wave function for small values of h, when the scalar field S appears as the phase of the wave function. By providing rigorous mathematical proofs, we justify our result for an arbitrary thrice differentiable function in one dimension and for distance transforms in two dimensions. We also furnish anecdotal visual evidences to corroborate our claim. Our result gives a new signature for the distance transforms and potentially serve as its gradient density estimator.
机译:存在许多基于经典力学的计算技术,但令人惊讶的是,并没有从量子力学中得到借鉴。我们的工作显示了Schrodinger形式主义在解决经典的Eikonal问题中的应用-形式为||的非线性一阶偏微分方程。 ▿ S || = f,其中强迫函数f(X)是正值有界函数,▿表示梯度算子。基于哈密顿量的Jacobi求解器,例如快速行进和快速扫掠方法,通过Godunov迎风离散方案求解S。与此形成鲜明对比的是,我们提出了一种Schrodinger波动力学形式主义,通过将其重铸为量子波方程的一种极限情况来求解该方程。我们证明了在极限条件下获得了非线性线性方程的解,因为普朗克常数h(作为自由参数)趋于相应线性Schrodinger方程的解的零。首先,我们考虑欧几里得距离函数问题,这是eikonal方程的一种特殊情况,其中强迫函数到处都是相等的。我们表明,对薛定inger波函数的解可以表示为可通过快速傅立叶变换(FFT)有效计算的两个函数之间的离散卷积。然后可以从波动函数的指数恢复欧几里得距离函数。由于波动函数是针对较小但非零的h计算的,因此获得的解为近似值。我们证明了针对欧氏距离函数问题的近似闭合形式解的收敛性为h→0的真实解,并且对于给定的h值也限制了误差。此外,我们解决方案的可微性使我们能够以封闭形式计算其一阶和二阶导数,也可以通过一系列卷积计算得出。为了确定距离函数的符号(在封闭区域内部为正,在外部区域为负),我们通过显式表明它们的计算也可以通过卷积来进行,以2D计算绕组数,以3D计算拓扑度。我们通过计算一组2D轮廓的中间轴向我们展示一种方法。与其他经典方法相比,我们的方法的主要优势在于,由于我们获得了波动函数的封闭形式解,因此不需要对梯度算子进行空间离散化;对于强制可能是任意的一般问题但是薛定inger方程是正函数和有界函数,因此它是一个广义的经过筛选的泊松方程。尽管是线性的,但它没有封闭形式的解决方案。我们使用标准的扰动分析方法来计算解,该解对于所有正和有界强迫函数都可以收敛。摄动技术需要可以使用FFT进行的一系列离散卷积;最后,使用平稳相位逼近,我们建立了一个数学结果,该数学结果将距离函数S的梯度密度与波函数的标度功率谱联系起来对于较小的h值,当标量场S作为波动函数的相位出现时。通过提供严格的数学证明,我们为一维三次任意微分函数和二维距离转换证明了我们的结果。我们还提供了轶事的视觉证据,以证实我们的主张。我们的结果为距离变换提供了新的特征,并有可能用作其梯度密度估计器。

著录项

  • 作者

    Gurumoorthy, Karthik S.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Applied Mathematics.;Statistics.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号