首页> 外文学位 >Anaerobic biodegradation of polycyclic aromatic hydrocarbons.
【24h】

Anaerobic biodegradation of polycyclic aromatic hydrocarbons.

机译:多环芳烃的厌氧生物降解。

获取原文
获取原文并翻译 | 示例

摘要

This study provides the first evidence that polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene and phenanthrene, can be degraded under methanogenic conditions, which typically predominate upgradient to the source of contamination. It was also verified that methanogenesis was involved in the degradation pathway using a selective inhibitor of methanogenesis. Further, molecular characterization via 16S rDNA sequences revealed the microbial community structure and suggested the possible roles of the major microbial species in the consortia. Consequently, targeted strategies were developed to isolate and characterize the species from the microbial community to identify their roles in anaerobic PAH biodegradation. In addition to PAHs, anaerobic benzene degradation was investigated because to date, neither successful isolation of benzene-degradees nor characterization of benzene-degrading communities has not been reported under methanogenic conditions. Moreover, surfactants were used to examine the effects of surfactant addition on phenanthrene-degrading microbial communities. The surfactant application inhibited phenanthrene degradation under methanogenic conditions. Further, molecular analysis revealed that the structure of microbial communities was altered and a number of microbial populations including methanogens vanished with surfactant addition. Hence, this result indicates that the disappeared populations and the dormant methanogenic activity might be related to the inhibitory effect on phenanthrene degradation under methanogenic conditions. Finally, this study successfully developed species-specific oligonucleotide probes for the detection of 16S rDNA in environmental samples by using DNA microarrays. The microarray approach identified the presence of target populations in environment samples more efficiently than a traditional molecular monitoring analysis. The results illustrate the potential for using microarray technology to provide a rapid and high-throughput platform for microbial population detection.
机译:这项研究提供了第一个证据,即多环芳烃(PAH),尤其是萘和菲可以在产甲烷条件下被降解,而产甲烷条件通常主要是升级为污染源。还证实了使用甲烷生成的选择性抑制剂,甲烷生成参与了降解途径。此外,通过16S rDNA序列的分子表征揭示了微生物群落结构,并暗示了主要微生物物种在财团中的可能作用。因此,制定了针对性的策略,从微生物群落中分离和鉴定该物种,以鉴定其在厌氧PAH生物降解中的作用。除多环芳烃外,还研究了厌氧苯的降解,因为迄今为止,在产甲烷条件下,尚未成功分离出苯降解物,也未报道苯降解菌群的特征。此外,使用表面活性剂来检查表面活性剂添加对菲降解微生物群落的影响。在产甲烷条件下,表面活性剂的应用抑制了菲的降解。此外,分子分析显示微生物群落的结构发生了改变,包括产甲烷菌在内的许多微生物种群随着表面活性剂的添加而消失。因此,该结果表明消失的种群和休眠的产甲烷活性可能与在产甲烷条件下对菲降解的抑制作用有关。最后,这项研究成功开发了物种特异性寡核苷酸探针,可通过使用DNA微阵列检测环境样品中的16S rDNA。与传统的分子监测分析相比,微阵列方法能够更有效地识别环境样品中目标种群的存在。结果表明,使用微阵列技术为微生物种群检测提供快速,高通量平台的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号