首页> 外文学位 >Computationally effective optimization methods for complex process control and scheduling problems.
【24h】

Computationally effective optimization methods for complex process control and scheduling problems.

机译:针对复杂过程控制和调度问题的计算有效的优化方法。

获取原文
获取原文并翻译 | 示例

摘要

Motivated by the soaring production cost, intensive competitions and public attentions on environmental issues, how to reduce the operational cost, raise the profit and enhance the operational safety attracts tremendous interests in the chemical and petroleum industry. Since the regulatory control strategy may not achieve such rigorous requirements, higher level process control activities, such as production planning, real time optimization (RTO) and multi-variable control are more frequently taken into account. Moreover, to attain the better performance, process control engineers often consider plant-wide operations rather than unit-based actions. As a result, both dynamic and discrete optimization techniques for the large scale problem nowadays play a more important role in the industry than before. Even the classical optimization based techniques, such as model predictive control (MPC), have seen considerable successes in many practical applications. However, they are still suffering from computational issues in the circumstances of a large-scale plant, complex dynamic system or the short sampling time period. Furthermore, these traditional optimization techniques usually employ the deterministic formulations, but often become unsuitable for uncertain dynamics. Hence, this thesis is mainly concerned with developing computationally effective algorithms to solve practical problems arising from those high level process control activities and highly affected by the disturbances.;Approximate dynamic programming (ADP) is one of the most efficient computational frameworks to handle large-scale, stochastic dynamic optimization problems. While a large number of successful cases based on ADP have been reported, several critical issues, including risk management, continuous state space representation and the stability of the control policy, prohibit its application in process control. To overcome these shortcomings, • We developed a systematic approach to extract the probabilistic model from the operational data of a plant-wide system and proposed a risk-sensitive RTO approach based on ADP. • An innovative procedure for designing control Lyapunov function (CLF) and robust control Lyapunov function (RCLF) is presented for a nonlinear control affine system under the input and state constraints. • Based on the well-designed RCLF, a mixed control strategy, combining the advantages of MPC and ADP, is proposed to handle the stability issue of the ADP control scheme.;In addition to dynamic optimization, another focus of this research is the discrete optimization. Considering mixed integer linear programming (MILP) becomes increasingly common in the planning and scheduling of the chemical production, it is worthwhile to explore a more efficient algorithm for solving this NP hard problem. A modified Benders decomposition approach, featured by its tighter cutting plane, is presented to accelerate the solution procedure.;All the proposed approaches are demonstrated and evaluated by several bench-mark examples. The comparisons with previous works also show the superiority of the suggested methods.
机译:由于生产成本飞涨,竞争激烈以及公众对环境问题的关注,如何降低运营成本,提高利润和提高运营安全性吸引了化学和石油行业的极大兴趣。由于监管控制策略可能无法达到如此严格的要求,因此更频繁地考虑更高级别的过程控制活动,例如生产计划,实时优化(RTO)和多变量控制。此外,为了获得更好的性能,过程控制工程师经常考虑在工厂范围内进行操作,而不是基于单元的操作。结果,如今,针对大规模问题的动态和离散优化技术都比以前更重要。甚至基于经典优化的技术(例如模型预测控制(MPC))在许多实际应用中也取得了相当大的成功。但是,在大型工厂,复杂的动态系统或较短的采样时间段的情况下,它们仍然遭受计算问题的困扰。此外,这些传统的优化技术通常采用确定性公式,但通常不适用于不确定的动力学。因此,本论文主要关注于开发有效的计算算法,以解决那些由高级过程控制活动引起且受到干扰严重影响的实际问题。近似动态编程(ADP)是处理大型系统的最有效的计算框架之一。规模,随机动态优化问题。尽管已经报道了许多基于ADP的成功案例,但一些关键问题(包括风险管理,连续状态空间表示和控制策略的稳定性)禁止将其应用于过程控制。为了克服这些缺点,我们开发了一种系统的方法来从整个工厂系统的运行数据中提取概率模型,并提出了一种基于ADP的风险敏感的RTO方法。 •针对输入和状态约束下的非线性控制仿射系统,提出了一种设计控制Lyapunov函数(CLF)和鲁棒控制Lyapunov函数(RCLF)的创新方法。 •在精心设计的RCLF的基础上,提出了一种混合控制策略,结合MPC和ADP的优点,以解决ADP控制方案的稳定性问题。;除动态优化外,本研究的另一个重点是离散优化。考虑到混合整数线性规划(MILP)在化工生产的计划和调度中变得越来越普遍,因此有必要探索一种更有效的算法来解决该NP难题。提出了一种改进的Benders分解方法,该方法具有更紧密的切割平面,可加快求解过程。;所有建议的方法均通过几个基准示例进行了演示和评估。与以前的工作进行比较也表明了所建议方法的优越性。

著录项

  • 作者

    Yang, Yu.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Chemical.;Engineering Industrial.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号