首页> 外文学位 >Interaction of intense laser pulses with gaseous media: Several exotic propagation effects in the femtosecond regime.
【24h】

Interaction of intense laser pulses with gaseous media: Several exotic propagation effects in the femtosecond regime.

机译:强激光脉冲与气体介质的相互作用:飞秒状态下的几种奇特传播效应。

获取原文
获取原文并翻译 | 示例

摘要

The experiments described in this thesis, illustrate effects that are observable only in the femtosecond pulse regime. Moderately high peak intensity (>1015 W/cm2) is essential for these experiments, and this is set by the threshold for optical field ionization of atoms.; We first examine the ionization scattering instability. This instability results directly from the very strong dependence of the optical field ionization rate on the laser electric field amplitude. Pulse propagation is accompanied by strong filamentary modulations in the electron density, which scatter the pulse leading to further modulations. Eventually, transverse beam breakup can occur. This is a universal effect that occurs for all pulses in excess of the field ionization threshold intensity. It is for shorter pulses of moderate intensity that the effect is most evident, where the instability can be present for the full pulse duration. Accompanying the modulations, we measure significant second harmonic generation.; We next study the propagation of femtosecond pulses in clustered gases produced by the adiabatic expansion and cooling of ordinary gases in high-pressure nozzle flow into vacuum. In the intense laser heating of these clusters, we have discovered a macroscopic effect on the heating beam. If the laser pulse is still on before the clusters have fully exploded, the beam can self-focus. This stands in strong contrast to the beam spreading effect observed in unclustered gases. The self-focusing effect is explained in terms of the explosive dynamics of the individual clusters induced by the laser pulse.; Finally, we used our femtosecond time resolving diagnostics to explore a phenomenon predicted earlier: the measurement of superluminal ionization fronts induced by intense Bessel beams. Using our femtosecond laser system, the superluminal group velocity of an ultrashort optical Bessel beam pulse was measured for its entire depth of field, corresponding to ∼2 × 104 optical wavelengths. To do this, we measured speed of the ionization front induced by the laser pulse, which travels at the Bessel beam pulse group velocity. Our experiment shows that pulse envelope can travel at superluminal speed and can generate physically observable phenomenon.
机译:本论文中描述的实验说明了仅在飞秒脉冲状态下可观察到的效果。这些实验必不可少的峰值强度(> 10 15 W / cm 2 )是由原子的光场电离阈值设置的。我们首先检查电离散射的不稳定性。这种不稳定性直接归因于光场电离速率对激光电场幅度的强烈依赖性。脉冲传播伴随着电子密度的强丝状调制,散射使脉冲散射,从而导致进一步的调制。最终,可能会发生横梁破裂。对于所有超过场电离阈值强度的脉冲,这都是普遍现象。对于中等强度的较短脉冲,效果最明显,在整个脉冲持续时间内都可能出现不稳定性。伴随调制,我们测量了大量的二次谐波。接下来,我们研究飞秒脉冲在簇状气体中的传播,这些气体是由绝热膨胀和高压喷嘴中的普通气体冷却到真空中而产生的。在这些团簇的强烈激光加热中,我们发现了对加热束的宏观影响。如果在簇完全爆炸之前激光脉冲仍然打开,则光束可以自聚焦。这与在非簇状气体中观察到的光束扩散效果形成鲜明对比。用激光脉冲引起的单个星团的爆炸动力学来解释自聚焦效应。最后,我们使用飞秒时间分辨诊断程序探索了较早预测的现象:由强贝塞尔光束引起的超腔电离前沿的测量。使用我们的飞秒激光系统,测量了超短贝塞尔光束脉冲的整个像场深度的超腔群速度,对应于约2×10 4 个光学波长。为此,我们测量了由激光脉冲引起的电离前沿的速度,该脉冲以贝塞尔光束脉冲群的速度行进。我们的实验表明,脉冲包络可以超光速传播,并且可以产生物理上可观察到的现象。

著录项

  • 作者

    Alexeev, Ilya Semenovich.;

  • 作者单位

    University of Maryland College Park.;

  • 授予单位 University of Maryland College Park.;
  • 学科 Physics Fluid and Plasma.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号