首页> 外文学位 >Epigenetic regulation and transcription factor programming enhances neurogenesis in neural stem cells.
【24h】

Epigenetic regulation and transcription factor programming enhances neurogenesis in neural stem cells.

机译:表观遗传调控和转录因子编程增强了神经干细胞的神经发生。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we questioned how neuronal and glial phenotypes become specialized. Epigenetic chromatin modifiers and transcription factors were investigated for their roles in programming and maintaining neural lineage restriction. A relatively homogeneous population of cells was generated by deriving immortalizing neural clones from embryonic rat forebrains. Three phenotypes; neuronal, glial and multipotential (GE6, GE2, CTX8), provided contrasting lineages to probe the factors responsible for shaping cell fate. One particular clone, GE6, differentiated into a functional inhibitory like interneuron. Gene expression analysis showed several genes such as Ascl1, Dlx1, Dlx5, may be responsible for the interneuronal specificity. Epigenetic regulation through histone modifications is believed to be an essential component within the developing nervous system, ultimately affecting cell fate. Testing chromatin signatures on specific neural genes with permissive and repressive histone "marks" shows that chromatin state in undifferentiated precursors correlates with current and predicts downstream gene expression. These results suggest that cell fate may already be predetermined. Furthermore, ChIP sequencing reveals global differences between the representative clones. Extrinsic growth factors, such as BMP2 promotes the neuronal and glial phenotypes in the multipotential cell CTX8. BMP2 asserts its phenotypic response in part by regulating global acetylation enrichment in specific neural gene networks, providing a mechanism to promote and maintain cell fate. Directly altering chromatin marks using a histone deacetylase inhibitor, valproic acid (VPA), globally acetylates the chromatin of CTX8 cells and enhances neurogenesis. VPA treatment was also confirmed to maintain and increase acetylation in specific neuronal genes, such as Ascl1. In addition, several microRNAs thought to play a role in neurogenesis were epigenetically regulated after VPA treatment. Finally, through the combination of gene expression and epigenetic analyses, direct programming through exogenous expression of Ascl1, Dlx1 and Dlx5 enhanced neurogenesis in CTX8. Gene expression and epigenetic signature mapping provides us with a deeper understanding of how lineage restriction occurs. Learning the programming rules will assist in directing homogeneous populations of neuronal cells to further probe the mechanisms of neurodegenerative diseases.
机译:在本文中,我们质疑神经元和神经胶质细胞表型如何变得专门化。研究了表观遗传染色质修饰剂和转录因子在编程和维持神经谱系限制中的作用。通过从胚胎大鼠前脑获得永生化的神经克隆,可以产生相对均一的细胞群。三种表型;神经元,神经胶质细胞和多能细胞(GE6,GE2,CTX8)提供了相反的谱系,以探究影响细胞命运的因素。一个特定的克隆GE6分化为功能性抑制剂,如中间神经元。基因表达分析显示几种基因,例如Ascl1,Dlx1,Dlx5,可能与神经元间特异性有关。通过组蛋白修饰的表观遗传调控被认为是发育中的神经系统的重要组成部分,最终影响细胞命运。用允许和抑制的组蛋白“标记”测试特定神经基因上的染色质签名,表明未分化前体中的染色质状态与电流相关,并预测下游基因表达。这些结果表明细胞命运可能已经预先确定。此外,ChIP测序揭示了代表性克隆之间的总体差异。外源性生长因子,例如BMP2,会促进多能细胞CTX8中的神经元和神经胶质细胞表型。 BMP2通过调节特定神经基因网络中的整体乙酰化富集来断言其表型反应,提供了促进和维持细胞命运的机制。使用组蛋白脱乙酰基酶抑制剂丙戊酸(VPA)直接改变染色质标记,可全局乙酰化CTX8细胞的染色质并增强神经发生。还证实了VPA治疗可维持并增加特定神经元基因(例如Ascl1)中的乙酰化。此外,在VPA处理后,表观遗传上调控了一些被认为在神经发生中起作用的microRNA。最后,通过基因表达和表观遗传学分析的结合,通过外源表达Ascl1,Dlx1和Dlx5进行直接编程增强了CTX8的神经发生。基因表达和表观遗传特征图谱使我们对谱系限制的发生方式有了更深入的了解。学习编程规则将有助于指导神经元细胞的同质群体,以进一步探索神经退行性疾病的机制。

著录项

  • 作者

    Ricupero, Christopher L.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick and University of Medicine and Dentistry of New Jersey.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick and University of Medicine and Dentistry of New Jersey.;
  • 学科 Biology Molecular.;Health Sciences Human Development.;Biology Cell.;Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号