首页> 外文学位 >Improving radar target tracking with the range rate measurement.
【24h】

Improving radar target tracking with the range rate measurement.

机译:通过测距率测量改善雷达目标跟踪。

获取原文
获取原文并翻译 | 示例

摘要

The radar tracking problem comprises measurement, association, and filtering. Radar measures a target's range, bearing, and range rate, which is target speed along a line extending from the radar to the target. Radar cannot directly measure acceleration, which is why the tracking problem is hard. The tracking system associates measurements to nearby, existing tracks. Unassociated measurements can start new tracks; associated measurements update the current track state estimates through Kalman filters. Our research addresses the filtering part of the tracking problem.; Although association algorithms frequently consider range rate, tracking filters generally ignore it. The reason is simple: range rate is highly nonlinear in a Cartesian coordinate system, and so it is unsuited for Kalman filters. Linearized approximations of range rate are used but the results are sometimes unsatisfactory. This is unfortunate, because range rate is the only measurement of target velocity. Filters that ignore range rate, consequently, are not using all of the available information.; Interacting multiple models, a robust derivative of the Kalman filter, are the most common, maneuvering target tracking filter. Recently, there has been interest in other types of robust filters but many of these have not yet been applied to the tracking problem. The newer filters are more complicated; however, the performance gains may be worth the additional computations. Until now, there have been no systematic efforts to evaluate the applicability of modern, robust filters to the tracking problem.; Our research has three parts. The first two parts, which are intended to better use the range rate measurement, are the discoveries of a new range rate linearization, and a mapping from range rate into a statistic of accelerations. Analytical and numerical analyses of these discoveries confirm that they can improve target trackers. In the third part of our research, we systematically compare interacting multiple models to other robust filters, with the goal of determining whether other robust filters could benefit target tracking systems.
机译:雷达跟踪问题包括测量,关联和滤波。雷达测量目标的射程,方位和射程速率,即沿着从雷达到目标的直线上的目标速度。雷达无法直接测量加速度,这就是为什么跟踪问题很困难的原因。跟踪系统将测量结果与附近的现有轨道相关联。无关的测量可以开始新的轨道;相关的测量通过卡尔曼滤波器更新当前轨道状态估计。我们的研究解决了跟踪问题的过滤部分。尽管关联算法经常考虑范围速率,但跟踪过滤器通常会忽略它。原因很简单:在笛卡尔坐标系中测距率是高度非线性的,因此不适合卡尔曼滤波器。使用了范围速率的线性近似,但是结果有时不能令人满意。这很不幸,因为测距率是目标速度的唯一度量。因此,忽略范围速率的过滤器不会使用所有可用信息。相互作用的多个模型是卡尔曼滤波器的鲁棒派生工具,是最常见的机动目标跟踪滤波器。最近,人们对其他类型的鲁棒滤波器感兴趣,但是其中许多还没有应用于跟踪问题。较新的过滤器更加复杂。但是,性能提升可能值得进行额外的计算。到目前为止,还没有系统的努力来评估现代的,鲁棒的滤波器对跟踪问题的适用性。我们的研究分为三个部分。旨在更好地使用测距率测量的前两个部分是新测距率线性化的发现,以及从测距率到加速度统计的映射。对这些发现的分析和数值分析证实,它们可以改善目标跟踪器。在研究的第三部分中,我们系统地比较了将多个模型与其他健壮过滤器进行交互的过程,目的是确定其他健壮过滤器是否可以使目标跟踪系统受益。

著录项

  • 作者

    Bizup, David Francis.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering System Science.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 270 p.
  • 总页数 270
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 系统科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号