首页> 外文学位 >Development of nanoparticle applications in cell imaging, bioassay and reactive oxygen species detection based on surface-enhanced raman spectroscopy.
【24h】

Development of nanoparticle applications in cell imaging, bioassay and reactive oxygen species detection based on surface-enhanced raman spectroscopy.

机译:基于表面增强拉曼光谱的纳米粒子在细胞成像,生物测定和活性氧种类检测中的应用开发。

获取原文
获取原文并翻译 | 示例

摘要

Surface-enhanced Raman scattering (SERS) has been developed over forty years with a wide variety of applications. Signals enhanced from single molecule absorbed on the surface of metallic nanoparticles can be up to 14-order-of-magnitude. This is due to the resonance between the optical field and surface plasmon of the metal substrate. Nanoshells have been chosen as substrates since they do not need to pre-aggregate due to their tunable optical property.;We developed Raman imaging system by incorporating functionalized nanoshells, cells and SERS. Nanoshells have been coated with different self-assembled monolayers containing poly(ethylene glycol) (PEG) molecules. Probes have been designed by coating nanoshells with Raman active PEG molecules and delivered into macrophage cells. The imaging technique requires less preparation and provides the information of nanoshells in semi-quantitative way in vitro.;We developed half-sandwich bioassay by detecting low volume of antigens on nitrocellulose membrane, detected by SERS. Antibodies were grafted to the surface of nanoshells and were conjugated to the antigens on the nitrocellulose membrane for detection. Raman active PEGs were conjugated onto the metal substrate for recognition and quantification. The benefits of this assay are that it is faster, easier to execute and requires less volume of antigen to conjugate onto the substrate.;We also developed reactive oxygen species (ROS) sensors by incubating PEGs and either 4-nitrobenzenethiol (4-NBT) or 4-mercaptophenol (4-MP) on the surface of nanoshells. By analyzing the changes of SERS spectrum, the production of hydroxyl radicals produced in the Fenton reaction can be tracked in low concentrations. The sensors were designed to track ROS production within cells when they are under oxidative stress.;The methods developed in this thesis are versatile, and can be broadly applied to the study of different subtracts, such as gold colloid.
机译:表面增强拉曼散射(SERS)已经开发了40年,具有广泛的应用。从金属纳米颗粒表面吸收的单分子增强的信号可以达到14数量级。这是由于金属基板的光场与表面等离子体激元之间的共振。纳米壳由于其可调的光学特性而无需预先聚集,因此被选作基质。我们通过结合功能化的纳米壳,细胞和SERS,开发了拉曼成像系统。纳米壳已被包含聚(乙二醇)(PEG)分子的不同自组装单层涂层。通过用拉曼活性PEG分子包被纳米壳并传递到巨噬细胞中来设计探针。成像技术需要较少的准备,并以半定量的方式在体外提供了纳米壳的信息。;我们通过检测硝酸纤维素膜上少量抗原(由SERS检测)开发了半三明治生物测定法。将抗体移植到纳米壳的表面,然后将其与硝酸纤维素膜上的抗原偶联以进行检测。将拉曼活性PEG缀合到金属基质上以进行识别和定量。该测定法的优势在于它更快,更容易执行并且需要更少的抗原量才能缀合到底物上。我们还通过孵育PEG和4-硝基苯硫醇(4-NBT)来开发了活性氧(ROS)传感器。或纳米壳表面上的4-巯基苯酚(4-MP)。通过分析SERS光谱的变化,可以在低浓度下追踪Fenton反应中产生的羟基自由基的产生。该传感器旨在跟踪细胞在氧化应激下的ROS产生。本论文开发的方法用途广泛,可广泛用于研究不同的减法方法,例如金胶体。

著录项

  • 作者

    Huang, Yiming.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Chemistry Analytical.;Chemistry Biochemistry.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号