首页> 外文学位 >Towards the integration of structural and systems biology: Structure-based studies of protein-protein interactions on a genome-wide scale.
【24h】

Towards the integration of structural and systems biology: Structure-based studies of protein-protein interactions on a genome-wide scale.

机译:迈向结构生物学和系统生物学的整合:在全基因组范围内基于结构的蛋白质-蛋白质相互作用研究。

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of protein-protein interactions (PPIs) is essential to understanding regulatory processes in a cell. High-throughput experimental methods have made significant contributions to PPI determination, but they are known to have many false positives and fail to identify a signification portion of bona fide interactions. The same is true for the many computational tools that have been developed. Significantly, although protein structures provide atomic details of PPIs, they have had relatively little impact in large-scale PPI predictions and there has been only limited overlap between structural and systems biology. Here in this thesis, I present our progress in combining structural biology and systems biology in the context of studies analyzing, coarse-grained modeling and prediction of protein-protein interactions.;I first report a comprehensive analysis of the degree to which the location of a protein interface is conserved in sets of proteins that share different levels of similarities. Our results show that while, in general, the interface conservation is most significant among close neighbors, it is still significant even for remote structural neighbors. Based on this finding, we designed PredUs, a method to predict protein interface simply by "mapping" the interface information from its structural neighbors (i.e., "templates") to the target structure. We developed the PredUs web server to predict protein interfaces using this "template-based" method and a support vector machine (SVM) to further improve predictions. The PredUs webserver outperforms other state-of-the-art methods that are typically based on amino acid properties in terms of both prediction precision and recall. Meanwhile, PredUs runs very fast and can be used to study protein interfaces in a high throughput fashion. Maybe more importantly, it is not sensitive to local conformational changes and small errors in structures and thus can be applied to predict interface of protein homology models, when experimental structures are not available.;I then describe a novel structural modeling method that uses geometric relationships between protein structures, including both PDB structures and homology models, to accurately predict PPIs on a genome-wide scale. We applied the method with considerable success to both the yeast and the human genomes. We found that the accuracy and the coverage of our structure-based prediction compare favorably with the methods derived from sequence and functional clues, e.g. sequence similarity, co-expression, phylogenetic similarity, etc. Results further improve when using a naive Bayesian classifier to combine structural information with non-structural clues (PREPPI), yielding predictions of comparable quality to high-throughput experiments. Our data further suggests that PREPPI predictions are substantially complementary to those by experimental methods thus providing a way to dissect interactions that would be hard to identify on a purely high-throughput experimental basis.;We have for the first time designed a "template-based" method that predicts protein interface with high precision and recall. We have also for the first time used 3D structure as part of the repertoire of experimental and computational information and find a way to accurately infer PPIs on a large scale. The success of PredUs and PREPPI can be attributed to the exploitation of both the information contained in imperfect models and the remote structure-function relationships between proteins that have been usually considered to be unrelated. Our results constitute a significant paradigm shift in both structural and systems biology and suggest that they can be integrated to an extent that has not been possible in the past.
机译:蛋白质-蛋白质相互作用(PPI)的知识对于理解细胞中的调节过程至关重要。高通量实验方法对PPI的确定做出了重大贡献,但众所周知,它们具有许多假阳性,并且无法识别出真正相互作用的重要部分。对于已经开发的许多计算工具也是如此。值得注意的是,尽管蛋白质结构提供了PPI的原子细节,但它们在大规模PPI预测中的影响相对较小,并且结构生物学和系统生物学之间的重叠很少。在本文中,我将在研究分析,粗粒度建模和蛋白质-蛋白质相互作用的预测的背景下,介绍我们在结合结构生物学和系统生物学方面所取得的进展。蛋白质界面在共享不同相似程度的蛋白质中被保守。我们的结果表明,尽管通常在近邻中界面保护最为重要,但即使对于较远的结构性邻居也仍然很重要。基于此发现,我们设计了PredUs,一种通过简单地将界面信息从其结构邻居(即“模板”)映射到目标结构来预测蛋白质界面的方法。我们开发了PredUs Web服务器,以使用此“基于模板的”方法预测蛋白质界面,并开发了支持向量机(SVM)来进一步改善预测结果。 PredUs Web服务器在预测精度和召回率方面均胜过通常基于氨基酸特性的其他最新方法。同时,PredUs运行非常快,可用于以高通量方式研究蛋白质界面。也许更重要的是,它对局部构象变化和结构中的小错误不敏感,因此可以在没有实验结构的情况下用于预测蛋白质同源性模型的界面。;然后我描述了一种使用几何关系的新颖结构建模方法在蛋白质结构(包括PDB结构和同源性模型)之间进行定位,以在全基因组范围内准确预测PPI。我们将该方法成功应用于酵母和人类基因组。我们发现,基于结构的预测的准确性和覆盖范围与源自序列和功能线索的方法相比具有优势,例如序列相似性,共表达,系统相似性等。使用朴素贝叶斯分类器将结构信息与非结构线索(PREPPI)结合使用时,结果会进一步提高,从而可以预测出与高通量实验可比的质量。我们的数据进一步表明,PREPPI预测与实验方法的预测基本互补,因此提供了一种剖析相互作用的方法,而这种相互作用很难在纯高通量实验基础上进行识别。;我们首次设计了“基于模板的预测蛋白质界面的方法具有很高的精确度和召回率。我们还首次将3D结构用作实验和计算信息库的一部分,并找到了一种大规模准确地推断PPI的方法。 PredU和PREPPI的成功可以归因于对不完善模型中包含的信息的利用以及通常被认为不相关的蛋白质之间的远程结构-功能关系。我们的结果构成了结构生物学和系统生物学的重大范式转变,表明它们可以整合到过去无法实现的程度。

著录项

  • 作者

    Zhang, Qiangfeng Cliff.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Systematic.;Biology Bioinformatics.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:18

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号