首页> 外文学位 >Biophysics underlying bistable neurons with branching dendrites .
【24h】

Biophysics underlying bistable neurons with branching dendrites .

机译:具有分支树突的双稳态神经元的生物物理。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this thesis is to investigate the biophysical basis underlying the nonlinear relationship between firing response and current stimulation in single motor neurons. After reviewing the relevant motoneuron physiology and theories that describe complex dendritic signaling properties, I hypothesize that at least five passive electrical properties must be considered to better understand the physiological input-output properties of motor neurons in vivo: input resistance, system time constant, and three signal propagation properties between the soma and dendrites that depend on the signal direction (i.e. soma to dendrites or vice versa) and type (i.e. direct (DC) or alternating (AC) current). To test my hypothesis, I begin with characterizing the signal propagation of the dendrites, by directly measuring voltage attenuations along the path of dendrites of the type-identified anatomical neuron models. Based on this characterization of dendritic signaling, I develop the novel realistic reduced modeling approach by which the complex geometry and passive electrical properties of anatomically reconstructed dendrites can be analytically mapped into simple two-compartment modeling domain without any restrictive assumptions. Combining mathematical analysis and computer simulations of my new reduced model, I show how individual biophysical properties (system input resistance, time constant and dendritic signaling) contribute to the local excitability of the dendrites, which plays an essential role in activating the plateau generating membrane mechanisms and subsequent nonlinear input-output relations in a single neuron. The biophysical theories and computer simulations in this thesis are primarily applied to motor neurons that compose the motor neuron pool for control of movement. However, the general features of the new reduced neuron modeling approach and important insights into neuronal computations are not limited to this area. My findings can be extended to other areas including artificial neural networks consisting of single compartment processors.
机译:本论文的目的是研究单个运动神经元中放电响应与电流刺激之间非线性关系的生物物理基础。在回顾了描述复杂的树突状信号传导特性的相关运动神经元生理学和理论之后,我假设必须考虑至少五个无源电学特性以更好地理解体内运动神经元的生理输入输出特性:输入电阻,系统时间常数和体细胞和树突之间的三种信号传播特性取决于信号方向(即体细胞到树突,反之亦然)和类型(即直流(DC)或交流(AC)电流)。为了检验我的假设,我首先通过直接测量沿类型识别的解剖神经元模型的树突路径的电压衰减来表征树突的信号传播。基于树突状信号的这种表征,我开发了一种新颖的逼真的简化建模方法,通过该方法,可以在没有任何限制性假设的情况下,将解剖重建的树突的复杂几何形状和无源电特性解析地映射到简单的两室建模域中。结合我的新简化模型的数学分析和计算机模拟,我展示了单个生物物理特性(系统输入电阻,时间常数和树突状信号)如何促进树突的局部兴奋性,这在激活高原产生膜机制中起着至关重要的作用以及单个神经元中的非线性输入输出关系。本文的生物物理理论和计算机模拟主要应用于构成运动神经元池以控制运动的运动神经元。但是,新的简化神经元建模方法的一般功能以及对神经元计算的重要见解并不限于此领域。我的发现可以扩展到其他领域,包括由单隔室处理器组成的人工神经网络。

著录项

  • 作者

    Kim, Hojeong.;

  • 作者单位

    University of Alberta (Canada).;

  • 授予单位 University of Alberta (Canada).;
  • 学科 Engineering Biomedical.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 老年病学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号