首页> 外文学位 >Interdiction and discrete bilevel linear programming.
【24h】

Interdiction and discrete bilevel linear programming.

机译:拦截和离散双线性规划。

获取原文
获取原文并翻译 | 示例

摘要

The primary focus of this dissertation is on hierarchical decision problems, a general problem class that allows incorporation of multiple decision-makers (DMs). A variety of real-world problems involve DMs with potentially conflicting objectives, and the assumption of a single DM limits the utility of standard models for such applications. In particular, we study problems with two levels for which a subset of the variables is required to take on integer values.;In mathematical programming terminology, this problem is formalized as mixed integer bilevel program (MIBLP), and the variables are divided into groups defined by their controlling DM. A key component of these models is the dependence of the lower-level DM's feasible region on the upper-level solution. From this perspective, an MIBLP can be viewed as a mixed integer linear program (MILP) into which a second parametric MILP has been embedded. We focus our study on the theoretical properties of MIBLPs, in order to determine how its structure can be exploited for algorithm design. In addition, because of the computational challenges the general problem presents, we examine special cases that are more amenable to algorithmic development.;The first such case is that of the pure integer bilevel linear program (IBLP). In the first portion of this work, we develop a branch-and-cut framework and an accompanying open source solver, MibS, for this problem class. Our algorithm can be seen as a generalization of the well-known branch-and-cut algorithm for MILP, but invokes specialized cutting planes to separate solutions that satisfy integrality constraints, but are bilevel infeasible.;After developing our pure integer framework, we return to the general case and examine its computational complexity and place it within the so-called polynomial hierarchy. Next, we examine the extent to which methods developed for the well-studied continuous version of the problem (BLP) can be extended to MIBLP. The majority of BLP solution methods rely on the assumption that all decision variables are continuous and, thus, cannot be readily applied to the mixed integer case. However, in an effort to bridge this gap, we use intuition gained from studying the relationship between linear programs (LPs) and MILPs. In particular, we draw heavily on the recently-developed mixed integer extensions of LP duality theory to develop single-level reformulations of MIBLP. For some particular special cases, these methods yield problems to which known methods can be applied, but the general reformulation requires the application of the subadditive dual, and cannot solved directly. In order to overcome this, we use approximations of the lower-level value function to derive an exact algorithm reminiscent of Benders' decomposition and the integer L-shaped method. The inherent difficulty of these problem means that finding exact solutions to large instances will likely be prohibitively expensive. Thus, we provide two heuristic methods, each of which attempts to balance upper- and lower-level optimality, that can be used to be find good solutions to general problems with little computational effort.;In the final section of this dissertation, we study an application in critical infrastructure protection, namely that of designing an early warning system to monitor the structural integrity of a municipal water system. The Steiner arborescence problem used to determine the optimal placement of acoustic sensors within the system is described, and a novel cutting plane algorithm is presented. Then, using this model as illustrative example, we demonstrate the utility of interdiction problems in performing a type of systematic sensitivity analysis of our optimal design to the underlying graph structure. Interdiction problems, a class of MIBLPs used to model the effect that can be exerted on an MILP through variable bound altercation are of particular interest in our work for a number of reasons, most notably their applicability for problems in homeland security and unique problem structure. We describe several methods based on this special structure and show how one might develop a problem-specific customization for MibS.
机译:本论文的主要重点是层次决策问题,这是一个通用的问题类别,允许合并多个决策者(DM)。现实世界中的各种问题都涉及到目标可能相互冲突的DM,而单个DM的假设限制了此类应用程序的标准模型的实用性。特别是,我们研究两个级别的问题,对于这些级别,变量的子集需要采用整数值。;在数学编程术语中,此问题形式化为混合整数双层程序(MIBLP),并且将变量分为若干组由其控制DM定义。这些模型的关键组成部分是下层DM的可行区域对上层解决方案的依赖。从这个角度来看,MIBLP可以看作是其中已嵌入第二个参数MILP的混合整数线性程序(MILP)。为了确定如何将其结构用于算法设计,我们将研究重点放在MIBLP的理论特性上。此外,由于存在计算难题,因此,我们提出了一般问题,因此我们研究了更适合算法开发的特殊情况。第一种情况是纯整数双级线性程序(IBLP)。在这项工作的第一部分中,我们针对该问题类开发了一个分支剪切框架以及一个随附的开源解决方案MibS。我们的算法可以看作是众所周知的MILP分支剪切算法的泛化,但调用专门的切割平面来分离满足完整性约束但不可行的解决方案。在开发了纯整数框架后,我们返回到一般情况,并检查其计算复杂度,并将其置于所谓的多项式层次结构中。接下来,我们研究为深入研究的问题的连续版本(BLP)开发的方法可以扩展到MIBLP的程度。大多数BLP解决方案方法都基于以下假设:所有决策变量都是连续的,因此不能轻易应用于混合整数情况。但是,为了弥合这种差距,我们使用从研究线性程序(LP)和MILP之间的关系中获得的直觉。特别是,我们大量借鉴了最近开发的LP对偶理论的混合整数扩展,以开发MIBLP的单级重新制定形式。对于某些特定的特殊情况,这些方法产生了可以应用已知方法的问题,但是一般的重新制定要求应用次加性对偶,并且不能直接解决。为了克服这个问题,我们使用较低值函数的近似值来得出精确的算法,使人联想到Benders的分解和整数L形方法。这些问题的固有困难意味着,为大型实例找到准确的解决方案可能会非常昂贵。因此,我们提供了两种启发式方法,每种方法都试图平衡上层和下层的最优性,这些方法可用于以较少的计算量找到一般问题的良好解决方案。在关键基础设施保护中的应用,即设计预警系统以监视市政供水系统的结构完整性。描述了用于确定系统中声传感器的最佳放置的Steiner树状问题,并提出了一种新颖的切割平面算法。然后,使用该模型作为说明性示例,我们演示了拦截问题在对我们的基础图结构进行最优设计的系统敏感性分析类型中的效用。拦截问题是一类MIBLP,用于模拟通过可变限界交配对MILP施加的影响,这是出于多种原因,在我们的工作中特别引起关注,最值得注意的是,它们适用于国土安全和独特问题结构中的问题。我们基于这种特殊结构描述了几种方法,并说明了如何为MibS开发针对特定问题的定制。

著录项

  • 作者

    DeNegre, Scott.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Industrial.;Engineering System Science.;Operations Research.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号